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Exercise 5.1. Consider the Drunkard’s walk Markov chain with state space X =
{0, 1, . . . , N} and transition matrix:

P =



1 0 0 0 · · · 0 0
β 0 α 0 · · · 0 0
0 β 0 α · · · 0 0
...

...
...

... . . . ...
...

0 0 · · · β 0 α 0
0 0 · · · 0 β 0 α
0 0 · · · 0 0 0 1


,

where 0 < α < 1 is the probability of moving one step from position k to position
k + 1, and β = 1 − α is the probability to move from position k to position k − 1,
for k = 1, . . . , N − 1.

(a) Given an initial distribution (0, . . . , 0, 1, 0, . . . , 0) with 1 on the j-th entry,
let pj, for j = 0, . . . , N , be the probability that Xn = N for some n ≥ 0 (the
drunkard reaches home). Find a set of linear equations for the pj. [Hint: Express
pj in terms of pj−1 and pj+1]

(b) Compute pj for the concrete case where N = 3, j = 1 and α = 1
2
.

Exercise 5.2. Consider the Weather in Oz Markov chain (Xn)n≥0 with state space
X = {c, r, s} (clear, rainy, snowy) and transition matrix:

P =

 0 1/2 1/2
1/4 1/2 1/4
1/4 1/4 1/2

 .

(a) Compute a stationary distribution for the Markov chain.

(b) Compute the entropy rate of the stochastic process.

Exercise 5.3. Consider the experiment of consecutively rolling a fair die. For n ≥ 1,
let Zn be the RV representing the number of rolls until ‘6’ appears n times.

(a) Is (Zn)n≥1 a Markov Chain?

(b) Is (Zn)n≥1 stationary?

(c) Compute the entropy rate of (Zn)n≥1.
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Exercise 5.4.

(a) Prove that for every Markov chain (Xn)n∈N the quantity H(X0|Xn) is non-
decreasing in n ≥ 0.

(b) Show that for any stationary discrete stochastic process (Xn)n∈Z,

H(X0|X−1, . . . , X−n) = H(X0|X1, . . . , Xn).

Exercise 5.5. We are given 2 coins: when tossed, coin A shows ‘head’ with proba-
bility p and ‘tail’ with probability 1−p, coin B is a fair coin. Consider the following
two-stage experiment. At the first stage we choose coin A with probability q and coin
B with probability 1− q. At the second stage we toss repeatedly and independently
the chosen coin. Let X0 be the RV taking value 1 if coin A is chosen and the value
0 if coin B is chosen. For n ≥ 1, let Xn be the RV referring to the outcome of the
n-th toss: if ’head’ shows up then Xn = 1 and if ’tail’ shows up then Xn = 0.

(a) For which values of p and q is (Xn)n≥1 stationary?

(b) For which values of p and q is (Xn)n≥0 stationary?

(c) Compute the entropy rates of (Xn)n≥1 and (Xn)n≥0.

Exercise 5.6. Let (Xn)n≥1 be a time-homogeneous Markov chain with state space
X = {0, 1} and transition probabilities: p(0|0) = 0.3, p(1|0) = 0.7, p(0|1) = 0.2,
p(1|1) = 0.8.

(a) Draw the transition graph.

(b) Compute the stationary distribution ν of the Markov chain.

(c) Let τ 0 be the return time to 0 after starting with X0 = 0. Based on the
transition graph, compute E(τ 0 | X0 = 0) as the sum of an infinite series and
then find ν(0) according to the Ergodic Theorem for Markov Chains. Compare
it with what you computed in (b).

Exercise 5.7. Imagine you are walking on the integers in the direction you are
facing (left or right), reversing direction after each step taken with probability p =
0.2. You start at 0 facing to the right. For n ≥ 0 let Xn be your position at time n.

(a) Describe the state space and transition probabilities of this process. Is (Xn)n≥0

a Markov chain?

(b) What is your expected number of steps taken before reversing direction?

(c) Calculate H(X1, . . . , Xn).

(d) Find the entropy rate of this process.

Exercise 5.8. Prove the following generalization of the claim used in the proof of
Proposition 3.19:

Let (Xn)n≥0 be an irreducible time-homogeneous Markov chain with a finite state
space X and transition matrix P . If f : X → R is a harmonic function with respect
to P for all x ∈ X except for at most one point x0 ∈ X , that is, when viewed as a
column vector (Pf)x = f(x) for all x ∈ X \ {x0}, then f = c1 is constant.

2


