Information Theory SS 2025

Institut für Diskrete Mathematik (5050), TU Graz

Exercise sheet 6 (05.06.2025)

Exercise 6.1. Consider again the Markov Chain $(X_n)_{n\geq 1}$ from Exercise 5.6 (last session).

- (a) Calculate the entropy rate h.
- (b) Given that the Markov chain starts at $X_1 = 0$, find whether the sequences $w_1, w_2 \in \mathcal{X}^{20}$ are in the typical set $A_{\varepsilon}^{(20)}$, for $\varepsilon = 0.05$:

 $w_1 = 01001010101101100100,$ $w_2 = 011110011101111110111.$

Exercise 6.2. Let $X: \Omega \to \mathcal{X} = \{a, b, c, d\}$ be a random variable with

$$\mathbb{P}[X = a] = \frac{3}{8}, \qquad \mathbb{P}[X = b] = \frac{2}{8}, \qquad \mathbb{P}[X = c] = \frac{2}{8}, \qquad \mathbb{P}[X = d] = \frac{1}{8}.$$

The elements of \mathcal{X} are encoded as follows:

$$C(a) = 00,$$
 $C(b) = 01,$ $C(c) = 11,$ $C(d) = 001.$

- (a) Is the code C (i) non-singular, (ii) prefix-free, (iii) uniquely decodable?
- (b) Calculate the entropy H(X) and the expected code length $\mathbb{E}(\ell(C))$.
- (c) Give a better code for this random variable (prefix-free, shorter expected length).

Exercise 6.3. Let $C: \mathcal{X} \to \Sigma = \{0, 1, \dots, D-1\}$ be a D-ary prefix code on a set \mathcal{X} of cardinality m and suppose that the code word lengths l_1, \dots, l_m satisfy the strict inequality

$$\sum_{i=1}^{m} D^{-l_i} < 1.$$

Show that there are arbitrary long strings $w \in \Sigma^*$ which are not code words, that is, w is not the code word of any string in \mathcal{X}^* .

Exercise 6.4. Let $\mathcal{X} = \{a, b, c, d, e, f, g, h\}$.

(a) Give an example of a prefix code $C: \mathcal{X} \to \{0,1\}^*$ with code word lengths

1

$$\ell(C(a)) = \ell(C(b)) = \ell(C(c)) = 2, \ \ell(C(d)) = 3,$$

$$\ell(C(e)) = \ell(C(f)) = \ell(C(g)) = 5, \ \ell(C(h)) = 6.$$

(b) Show that the Kraft inequality is a strict inequality for this code, that is,

$$\sum_{x \in \mathcal{X}} 2^{-\ell(C(x))} < 1.$$

- (c) Find a binary sequence of length 6 which cannot be decoded.
- (d) Find a prefix code $C: \mathcal{X} \to \{0,1\}^*$ such that we have equality in the Kraft inequality.
- (e) Find a probability distribution for a random variable $X : \Omega \to \mathcal{X}$ such that your code is optimal and compare the expected code length with H(X).

Exercise 6.5. Consider the random variable $X : \Omega \to \{x_1, \dots, x_{10}\}$ with probability distribution

$$p = (0.25, 0.12, 0.13, 0.15, 0.03, 0.05, 0.04, 0.13, 0.08, 0.02).$$

In a D-ary Huffman code at each step we choose D nodes with the lowest probability and construct their parent with probability the sum of the probabilities of the children. Only at the first step we may merge less than D children: given that $|\mathcal{X}| = N$, at the first step we build the parent of $k = 2 + (N - 2) \mod (D - 1)$ children. For example, for N = 19 and D = 5 we get $k = 2 + 17 \mod 4 = 3$.

- (a) Build a binary Huffman code.
- (b) Compute the expected code length of your code and compare it to H(X).
- (c) Build a ternary Huffman code over the alphabet $\Sigma = \{0, 1, 2\}$.
- (d) Compute the expected code length of your code and compare it to

$$H_3(X) = -\sum_{x \in \mathcal{X}} p(x) \log_3(p(x)).$$

Exercise 6.6. Let X, Y be random variables with values in $\mathcal{X} = \mathcal{Y} = \{0, 1\}$ and let $p_X(0) = q$, $p_X(1) = 1 - q$. Let $\mathcal{C} = (\mathcal{X}, P, \mathcal{Y})$ be the channel with input X, output Y and transition matrix

$$P = \left[\begin{array}{cc} 1 - p & p \\ p & 1 - p \end{array} \right].$$

- (a) Compute I(X,Y) in terms of p and q.
- (b) For which values of p is I(X;Y) maximal?
- (c) For which values of p is I(X;Y) minimal?