E: Differentialrechnung

Differentialrechnung

Definition

Gegeben: $f: D \to \mathbb{R}$, x_0 im Inneren von D.

$$f$$
 differenzierbar in $x_0 : \iff \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ existiert.

$$\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = \lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} \text{ (erste) Ableitung von } f \text{ in } x_0.$$

- $\frac{f(x) f(x_0)}{x x_0}$ Differenzenquotient
- Schreibweisen $f'(x_0) = \frac{df}{dx}\Big|_{x=x_0} = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$

Philipp Sprüssel

Differentialrechnung

Satz

f in x_0 diff'bar $\Longrightarrow f$ in x_0 stetig

• Stetig \implies diff'bar! (z.B. f(x) = |x|)

3 / 24

Differentialrechnung

 $I\subseteq\mathbb{R}$ offenes Intervall

Definition

 $f: I \to \mathbb{R}$ auf I diff'bar : $\iff f$ diff'bar in jedem $x_0 \in I$ $f': I \to \mathbb{R}$, $x \mapsto f'(x)$ Ableitung von f.

- Sprechweise: ableiten bzw. differenzieren
- Schreibweisen: f'(x), $\frac{df(x)}{dx}$, $\frac{d}{dx}f(x)$
- Variable t (Zeit): $\dot{f}(t)$ statt f'(t)

Grundlegende Ableitungen

$$\bullet (x^n)' = nx^{n-1} \qquad (n \in \mathbb{Z})$$

- $(e^x)' = e^x$
- $\bullet \ \left(\sin(x)\right)' = \cos(x)$
- $\bullet \left(\cos(x) \right)' = -\sin(x)$

Ableitungsregeln

Gegeben: $f, g: I \to \mathbb{R}$ diff'bar

- Summerregel (f(x) + g(x))' = f'(x) + g'(x)
- Produktregel (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)(Spezialfall: (cf(x))' = cf'(x))
- Quotientenregel $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$ (falls $g(x) \neq 0$)

Gegeben: $g: I \to J$, $f: J \to \mathbb{R}$ beide diff'bar

• Kettenregel (f(g(x)))' = f'(g(x))g'(x)

Ableitungen von Polynomen und rationalen Funktionen

Satz

- Polynome auf R diff'bar
- Rationale Funktionen auf ihrem Def'bereich diff'bar

Insbesondere:

$$(a_n x^n + a_{n-1} x^{n-1} + \dots + a_0)' = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \dots + a_1$$

Philipp Sprüssel Mathematik A 16.-17. Januar 2020 7 / 24

Ableitungen von Exponential- und Hyperbelfunktionen

•
$$(e^x)' = e^x$$

$$\bullet (a^{\times})' = \ln(a) \cdot a^{\times} \qquad (a > 0)$$

- $\bullet \left(\sinh(x) \right)' = \cosh(x)$
- $\bullet \left(\cosh(x)\right)' = \sinh(x)$
- $(\tanh(x))' = 1 \tanh(x)^2 = \frac{1}{\cosh(x)^2}$
- $(\coth(x))' = 1 \coth(x)^2 = -\frac{1}{\sinh(x)^2}$ $(x \neq 0)$

Ableitungen trigonometrischer Funktionen

- $\bullet (\sin(x))' = \cos(x)$
- $\bullet \left(\cos(x)\right)' = -\sin(x)$
- $(\tan(x))' = 1 + \tan(x)^2 = \frac{1}{\cos(x)^2}$ $(x \neq \frac{2k+1}{2}\pi)$
- $(\cot(x))' = -1 \cot(x)^2 = -\frac{1}{\sin(x)^2}$ $(x \neq k\pi)$

Ableitung von Umkehrfunktionen

Satz

Gegeben: Intervalle $I, J \subseteq \mathbb{R}$, $f: I \to J$ stetig, bijektiv, diff'bar in $x_0 \in I$ mit $f'(x_0) \neq 0$. Dann:

- $f^{-1}: J \rightarrow I$ diff'bar in $y_0 = f(x_0)$
- $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$
- $f'(x_0) = 0 \Longrightarrow f^{-1}$ in y_0 nicht diff'bar!

Weitere grundlegende Ableitungen

•
$$\left(\ln |x| \right)' = \frac{1}{x}$$
 $(x \neq 0)$

•
$$(x^{\alpha})' = \alpha x^{\alpha - 1}$$
 $(x > 0, \alpha \in \mathbb{R})$

•
$$(\arcsin(x))' = \frac{1}{\sqrt{1-x^2}}$$
 $(x \in (-1,1))$

•
$$(\arccos(x))' = -\frac{1}{\sqrt{1-x^2}}$$
 $(x \in (-1,1))$

$$\bullet \left(\arctan(x)\right)' = \frac{1}{1+x^2}$$

$$\bullet \ \left(\operatorname{arccot}(x)\right)' = -\frac{1}{1+x^2}$$

Einseitige Ableitungen

Definition

Gegeben: $f: I \to \mathbb{R}$, $x_0 \in I$. Dann ist f in x_0

- linksseitig differenzierbar : $\iff f'(x_0^-) = \lim_{x \to x_0^-} \frac{f(x) f(x_0)}{x x_0}$ existiert
- rechtsseitig differenzierbar : $\iff f'(x_0^+) = \lim_{x \to x_0^+} \frac{f(x) f(x_0)}{x x_0}$ existiert
- $f'(x_0^-), f'(x_0^+)$ links-/rechtsseitige Ableitung
- diff'bar in $x_0 \iff$ links- u. rechtsseitig diff'bar u. $f'(x_0^-) = f'(x_0^+)$
- links- u. rechtsseitig diff'bar

 → diff'bar

Höhere Ableitungen

- f diff'bar $\longrightarrow f'$ Ableitung von f
- f' diff'bar $\longrightarrow f'' = (f')'$ zweite Ableitung von f
- f'' diff'bar $\longrightarrow f''' = (f'')'$ dritte Ableitung von f

n-mal

- Schreibweise: $\widehat{f''...'} = f^{(n)} = \frac{d^n f}{dx^n}$ n-te Ableitung von f
- f *n*-mal differenzierbar : $\iff f^{(n)}$ existiert
- f beliebig oft differenzierbar : $\iff f^{(n)}$ existiert für alle n

Gegeben: $f: I \to \mathbb{R}$, $x_0 \in I$

Definition

- x_0 lokales Maximum : $\iff f(x) \le f(x_0)$ nahe x_0 (formal: $\exists \delta > 0 \ \forall x \in I : (|x x_0| < \delta \implies f(x) \le f(x_0)))$
- x_0 lokales Minimum : $\iff f(x) \ge f(x_0)$ nahe x_0
- x_0 lokale Extremstelle : $\iff x_0$ lokales Maximum oder Minimum
- x_0 globales Maximum : $\iff f(x_0)$ größter Wert
- x_0 globales Minimum : $\iff f(x_0)$ kleinster Wert

Satz

Gegeben: $f:[a,b] \to \mathbb{R}$ diff'bar in lokaler Extremstelle $x_0 \in (a,b)$.

$$\implies f'(x_0) = 0$$

- $f'(x_0) = 0$ notwendig für Extremstelle
- nicht hinreichend!

Gegeben: $f:[a,b] \to \mathbb{R}$

Definition

$$x_0 \in (a, b)$$
 stationärer Punkt : $\iff f'(x_0) = 0$

- Iokale Extremstelle ⇒ stationärer Punkt
- stationärer Punkt → lokale Extremstelle

Definition

 $x_0 \in (a, b)$ Sattelpunkt : \iff stationärer Punkt und

- lok. Max. auf $[a, x_0]$ & lok. Min. auf $[x_0, b]$ oder
- lok. Min. auf $[a, x_0]$ & lok. Max. auf $[x_0, b]$

Satz von Rolle

Angenommen $f:[a,b] \to \mathbb{R}$

- stetig,
- in (a, b) diff'bar,
- erfüllt f(a) = f(b).

Dann existiert stationärer Punkt $x_0 \in (a, b)$.

Kandidaten für Extremstellen von $f: [a, b] \to \mathbb{R}$:

- stationäre Punkte in (a, b)
- $x_0 \in (a, b)$ mit f nicht diff'bar
- $x_1 = a$
- $x_2 = b$

Mittelwertsätze

(Erster) Mittelwertsatz der Differentialrechnung

Gegeben: $f:[a,b] \to \mathbb{R}$ stetig, diff'bar auf (a,b).

Dann existiert $x_0 \in (a, b)$ mit

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}.$$

ullet Alternative Formulierung: Es gibt $\delta \in (0,1)$ mit

$$f(b) = f(a) + (b-a) \cdot f'(a + \delta(b-a)).$$

Folgerung

Gegeben: $f, g: [a, b] \to \mathbb{R}$ stetig, diff'bar auf (a, b).

- f'(x) = 0 für alle $x \in (a, b) \Longrightarrow f$ konstant
- f'(x) = g'(x) für alle $x \in (a, b) \Longrightarrow f(x) g(x)$ konstant
- $f'(x) \ge 0$ für alle $x \in (a, b) \Longrightarrow f$ monoton wachsend
- f'(x) > 0 für alle $x \in (a, b) \Longrightarrow f$ streng monoton wachsend
- $f'(x) \le 0$ für alle $x \in (a, b) \Longrightarrow f$ monoton fallend
- f'(x) < 0 für alle $x \in (a, b) \Longrightarrow f$ streng monoton fallend

Philipp Sprüssel Mathematik A 16.-17. Januar 2020

Mittelwertsätze

Zweiter (Cauchyscher) Mittelwertsatz

Gegeben: $f, g: [a, b] \to \mathbb{R}$ stetig, diff'bar auf (a, b) mit $g'(x) \neq 0$ für alle $x \in (a, b)$.

Dann ist $g(a) \neq g(b)$ und es existiert $x_0 \in (a, b)$ mit

$$\frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

21 / 24

Gegeben: x_0 Kandidat für Extremstelle, $\delta > 0$

•
$$f'(x)$$
 $\begin{cases} \geq 0 & x \in (x_0 - \delta, x_0), \\ \leq 0 & x \in (x_0, x_0 + \delta) \end{cases} \implies x_0 \text{ Maximum}$

•
$$f'(x)$$
 $\begin{cases} \leq 0 & x \in (x_0 - \delta, x_0), \\ \geq 0 & x \in (x_0, x_0 + \delta) \end{cases} \implies x_0 \text{ Minimum}$

Wenn x₀ kein Randpunkt:

- f'(x) > 0 nahe $x_0 \implies x_0$ keine Extremstelle
- f'(x) < 0 nahe $x_0 \implies x_0$ keine Extremstelle
- ullet beide Fälle & x_0 stationärer Punkt \implies Sattelpunkt

Gegeben: f zweimal diff'bar in stationärem Punkt x_0

- $f''(x_0) > 0 \implies x_0$ Minimum
- $f''(x_0) < 0 \implies x_0$ Maximum
- $f''(x_0) = 0 \implies \text{ keine Aussage!}$
- $f''(x_0) = 0$ und $f'''(x_0) \neq 0 \implies x_0$ Sattelpunkt

Gegeben: $f: I \to \mathbb{R}$ stetig

Gesucht: lokale Extremstellen

- finde Kandidatstellen
 - ► stationäre Punkte
 - nicht diff'bare Stellen
 - ► Randpunkte
- identifiziere Extremstellen
 - Vorzeichen Ableitung oder
 - 2. Ableitung (stationäre Punkte)oder
 - Wertevergleich

16.-17. Januar 2020

24 / 24