Mathematik A (ET) Wintersemester 2021/22

8. Übungsblatt (01.12.2021)

Beispiel 8.1. Sei $V \subseteq \mathbb{R}^4$ der von den Vektoren

(3 Pkt.)

$$\vec{v}^{(1)} = \begin{pmatrix} 1 \\ -2 \\ 5 \\ -3 \end{pmatrix}, \quad \vec{v}^{(2)} = \begin{pmatrix} 2 \\ 3 \\ 1 \\ -4 \end{pmatrix}, \quad \vec{v}^{(3)} = \begin{pmatrix} 3 \\ 8 \\ -3 \\ -5 \end{pmatrix}$$

aufgespannte Unterraum.

- (a) Ermitteln Sie die Dimension und eine Basis B von V.
- (b) Bestimmen Sie, ob V den Vektor

$$\vec{v} = \begin{pmatrix} -3\\ -15\\ 12\\ 3 \end{pmatrix}$$

enthält und finden Sie gegebenenfalls die Koordinaten von v bezüglich der berechneten Basis B.

Beispiel 8.2. Berechnen Sie, in Abhängigkeit von $\alpha \in \mathbb{R}$, den Winkel zwischen den Vektoren

$$\vec{v} = \begin{pmatrix} 1 \\ \alpha \\ 3 \end{pmatrix}$$
 und $\vec{w} = \begin{pmatrix} \alpha \\ 4 \\ 6 \end{pmatrix}$.

Für welche Werte von α sind \vec{v} , \vec{w} orthogonal, für welche Werte sind sie parallel?

Beispiel 8.3. Weisen Sie nach, dass

(2 Pkt.)

$$\vec{w}^{(1)} = \begin{pmatrix} \cos \theta \\ 0 \\ \sin \theta \\ 0 \end{pmatrix}, \quad \vec{w}^{(2)} = \begin{pmatrix} -\sin \theta \\ 0 \\ \cos \theta \\ 0 \end{pmatrix}, \quad \vec{w}^{(3)} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}$$

eine Orthonormalbasis des von ihnen aufgespannten Unterraumes W von \mathbb{R}^4 bilden und bestimmen Sie die Orthogonalprojektion von

$$\vec{v} = \begin{pmatrix} \cos \theta \\ 1 \\ -\sin \theta \\ -1 \end{pmatrix}$$

auf W.

Beispiel 8.4. Gegeben ist die folgende Basis von \mathbb{R}^3 :

$$\vec{u}^{(1)} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{u}^{(2)} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{u}^{(3)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Verwenden Sie das Gram-Schmidtsche Verfahren, um aus den Vektoren $u^{(1)}$, $u^{(2)}$, $u^{(3)}$ eine Orthonormalbasis von \mathbb{R}^3 zu bilden. Führen Sie die Rechnung zweimal durch: Einmal in der Reihenfolge $u^{(1)}$, $u^{(2)}$, $u^{(3)}$ und einmal in der Reihenfolge $u^{(3)}$, $u^{(2)}$, $u^{(1)}$.

Beispiel 8.5. Sei V ein Vektorraum und sei U der von den Vektoren $\vec{u}^{(1)}, \ldots, \vec{u}^{(n)}$ aufgespannte Unterraum von V. Sei $\vec{v} \in V$, sodass \vec{v} orthogonal zu jedem $\vec{u}^{(i)}$, $i = 1, \ldots, n$ ist. Zeigen Sie, dass \vec{v} orthogonal zu jedem Vektor $\vec{u} \in U$ ist.