Mathematik A (EEE) WS 2024/25

Institut für Diskrete Mathematik (5050), TU Graz

8. Übungsblatt (04.12.2024)

Beispiel 8.1. Entscheiden Sie, ob die folgenden Mengen U Unterräume der Vektorräume V sind (Beweis oder Gegenbeispiel):

(a) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0\}, \quad V = \mathbb{R}^3.$

(b) $U = \{(x, y) \in \mathbb{R}^2 \mid x^2 = y^2\}, \quad V = \mathbb{R}^2.$

(c) $U = \{f : \mathbb{R} \to \mathbb{R} \mid f(3) = 0\}, \quad V = \{f : \mathbb{R} \to \mathbb{R}\}.$ Hier definiert man (f + g)(x) = f(x) + g(x) und $(cf)(x) = cf(x), c \in \mathbb{R}.$

Beispiel 8.2. Seien U_1 und U_2 Unterräume eines Vektorraums.

(3 Pkt.)

(a) Zeigen Sie, dass der Schnitt von U_1 und U_2 , gegeben durch $U_1 \cap U_2 := \{u \in V \mid u \in U_1 \text{ und } u \in U_2\}$, ein Unterraum von V ist.

(b) Sei $V = \mathbb{R}^2$. Finden Sie Unterräume U_1 und U_2 von V, sodass die Vereinigung $U_1 \cup U_2 := \{u \in V \mid u \in U_1 \text{ oder } u \in U_2\}$ kein Unterraum von V ist.

Beispiel 8.3. Sei $\vec{u} = (\lambda, 1, 0)$, $\vec{v} = (1, \lambda, 1)$ und $\vec{w} = (0, 3, \lambda)$. Finden Sie alle Werte λ , sodass die Menge $\{\vec{u}, \vec{v}, \vec{w}\}$ eine linear abhängige Teilmenge von \mathbb{R}^3 ist.

Beispiel 8.4. Sei $V \subseteq \mathbb{R}^4$ der von den Vektoren (3 Pkt.)

$$\vec{v}_1 = \begin{pmatrix} 1 \\ -2 \\ 5 \\ -3 \end{pmatrix}, \quad \vec{v}_2 = \begin{pmatrix} 2 \\ 3 \\ 1 \\ -4 \end{pmatrix}, \quad \vec{v}_3 = \begin{pmatrix} 3 \\ 8 \\ -3 \\ -5 \end{pmatrix}$$

aufgespannte Unterraum.

- (a) Ermitteln Sie die Dimension und eine Basis B von V.
- (b) Bestimmen Sie, ob V den Vektor

$$\vec{v} = \begin{pmatrix} 3\\15\\-12\\-3 \end{pmatrix}$$

enthält und stellen Sie gegebenenfalls v als Linearkombination Ihrer berechneten Basis B dar.

Beispiel 8.5. Berechnen Sie, in Abhängigkeit von $\alpha \in \mathbb{R}$, den Winkel zwischen den Vektoren (2 Pkt.)

$$\vec{v} = \begin{pmatrix} 1 \\ \alpha \\ 3 \end{pmatrix} \quad \text{und} \quad \vec{w} = \begin{pmatrix} \alpha \\ 4 \\ 6 \end{pmatrix}.$$

Für welche Werte von α sind \vec{v} , \vec{w} orthogonal, für welche Werte sind sie parallel?