Aufgabe 10. Bestimme alle Zahlen $m, n \in \mathbb{N}$, für die gilt

- (a) ggT(m, n) = 7 und kgV(m, n) = 2730.
- (b) ggT(m, n) = 1 und kgV(m, n) = 56.

Untersuche in den folgenden Aufgaben, welche der angegebenen Relationen die Eigenschaften Reflexivität, Symmetrie, Antisymmetrie, Transitivität, Äquivalenzrelation oder Halbordnungsrelation erfüllen und bestimme ggf. die Äquivalenzklassen.

Aufgabe 11. (a) $X = \{a, b, c, d\}$, R entsprechend der folgenden Tabelle:

(b) $X = \mathbb{N}, mRn \iff ggT(m, n) = 5$

Aufgabe 12. (a) $X = \mathbb{R}^2$, $(x_1, x_2)R(y_1, y_2) \iff x_2 \leq y_2$.

(b) $X = \mathbb{R}, xRy \iff x - y \in \mathbb{Z}.$

Aufgabe 13. (a) X eine beliebige Menge, Relation $xRy \iff x \neq y$.

(b) A eine beliebige Menge, $X = \mathcal{P}(A) \setminus \{\emptyset\}$ (Potenzmenge ohne die leere Menge), $xRy \iff x \cap y \neq \emptyset$

Aufgabe 14. Sei $A = \{1, 2, 3, 4\}$. Bilde die kleinste Äquivalenzrelation auf A, die die Elemente (1,3) und (2,3) enthält.

Aufgabe 15. Sei X eine Menge und R eine Relation auf X. Die inverse Relation R^{-1} ist definiert durch

$$xR^{-1}y \iff yRx.$$

Die Verknüpfung zweier Relationen $S=R_1\cdot R_2$ ist definiert durch

$$xSy \iff \exists z : xR_1z \land zR_2y$$

Sei X eine Menge von Personen und R die Relation

$$xRy \iff x \text{ ist ein Kind von } y$$

Welche Relationen stellen die Verknüpfungen $R \cdot R$, $R^{-1} \cdot R$ und $R \cdot R^{-1}$ dar?