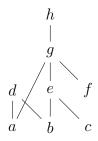
Aufgabe 19. Zeige, daß durch

$$(x,y) \sim (u,v) : \iff x-y = u-v$$

eine Äquivalenzrelation auf \mathbb{R}^2 definiert wird. Bestimme die Faktormenge $\mathbb{R}^2/_{\sim}$ und interpretiere sie geometrisch.

Aufgabe 20. Seien X und Y Mengen und $f: X \to Y$ eine Funktion. Zeige, daß durch


$$x \sim y : \iff f(x) = f(y)$$

eine Äquivalenz
relation auf X definiert wird und daß die Funktion

$$f: X/_{\sim} \to Y$$
$$[x] \mapsto f(x)$$

wohldefiniert und injektiv ist.

Aufgabe 21. Wir betrachten die Menge $\{a, b, c, d, e, f, g, h\}$ mit der durch das folgende Hasse-Diagramm gegebenen Ordnungsrelation.

- (a) Bestimme, wenn existent, alle minimalen und maximalen Elemente sowie Maximum und Minimum.
- (b) Zähle alle Ketten² auf.
- (c) Zähle alle Antiketten³ auf.
- (d) Bestimme, wenn möglich, die folgenden Infima⁴ und Suprema⁵:

$$a \vee c, a \wedge c, c \vee f, d \vee g, d \wedge g, d \wedge e, d \wedge f, d \vee f$$

²Eine **Kette** ist eine totalgeordnete Teilmenge.

³Eine **Antikette** ist eine Teilmenge mit paarweise unvergleichbaren Elementen.

⁴Das **Infimum** $x \wedge y$ von zwei Elementen ist die größte untere Schranke.

⁵Das **Supremum** $x \vee y$ von zwei Elementen ist die kleinste obere Schranke.