Aufgabe 20. Rechne nach, daß die Abbildung

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \mapsto 1 \qquad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \mapsto 1 \qquad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \mapsto 1$$
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \mapsto -1 \qquad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \mapsto -1 \qquad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \mapsto -1$$

von $(\mathfrak{S}_3, \circ) \to (\{\pm 1\}, \cdot)$ ein Gruppenhomomorphismus ist.

Aufgabe 21. Sei (G, \circ) eine Gruppe. Zeige, daß die Abbildung $f: G \to G$, $x \mapsto x^{-1}$ bijektiv ist und daß f ein Automorphismus ist genau dann, wenn G abelsch ist.

Aufgabe 22. Sei $h: G_1 \to G_2$ ein Gruppenhomomorphismus und $H_1 \subseteq G_1$ eine Untergruppe. Zeige, daß im $h = h(H_1)$ eine Untergruppe von G_2 ist.

Aufgabe 23. Eine abelsche Gruppe heißt *einfach*, wenn sie keine nichttrivialen Untergruppen besitzt. Zeige, daß $(\mathbb{Z}_n, +)$ einfach ist genau dann, wenn $n \in \mathbb{P}$ (Primzahl).

Aufgabe 24. Wir betrachten $(\mathbb{R}, \oplus, \odot)$ mit den Verknüpfungen

$$a \oplus b = \max(a, b)$$
 $a \odot b = a + b$

- (a) Welche Ringaxiome sind erfüllt? Welches Element muß hinzugefügt werden, um ein neutrales Element bezüglich der Addition \oplus zu erhalten?
- (b) Löse das "lineare" Gleichungssystem

$$((-1) \odot x) \oplus (\epsilon \odot y) = 1$$
$$((-2) \odot x) \oplus (0 \odot y) = 1$$

wobei ϵ das unter (a) gefundene neutrale Element bezüglich Addition bezeichnet.

Aufgabe 25. Zeige, daß \mathbb{R}^2 mit den Operationen

$$(a_1, a_2) + (b_1, b_2) := (a_1 + b_1, a_2 + b_2)$$

 $(a_1, a_2) \cdot (b_1, b_2) := (a_1b_1 + a_2b_2, a_1b_2 + a_2b_1)$

einen kommutativen Ring bildet und bestimme Einselement, Nullteiler und invertierbare Elemente.

Aufgabe 26. Zeige die folgenden Rechenregeln für komplexe Zahlen z, z_1, z_2 :

(a)
$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}$$
(b)
$$z + \overline{z} = 2 \operatorname{Re}(z)$$
(c)
$$z - \overline{z} = 2i \operatorname{Im}(z)$$
(d)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
(e)
$$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$
(f)
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$
(g)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

Aufgabe 27. Löse das Gleichungssystem

über dem Körper der komplexen Zahlen.