Aufgabe 51. Sei $U = \mathcal{L}(\{(1,0,0,1),(-1,1,-1,1)\}) \subseteq \mathbb{R}^4$. Bestimme alle Komplementärräume W, die von Vektoren der kanonischen Basis e_1, e_2, e_3, e_4 aufgespannt werden.

Aufgabe 52. Wir betrachten die folgenden Unterräume des \mathbb{R}^4 :

$$U = \mathcal{L}\left(\left\{\begin{bmatrix} -1\\ -1\\ 2\\ -7 \end{bmatrix}, \begin{bmatrix} 2\\ 2\\ -4\\ 14 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ -2\\ 3 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 0\\ 4 \end{bmatrix}\right\}\right), \quad W = \left\{\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix} \in \mathbb{R}^4 \begin{vmatrix} 3x_1 - 5x_2 + 2x_4 = 0\\ -x_1 - 3x_2 + 4x_3 = 0 \end{pmatrix}\right\}.$$

Berechne Basen B_U , B_W , $B_{U\cap W}$ und B_{U+W} der Räume U, W, $U\cap W$, U+W, sodaß die folgenden Relationen erfüllt sind:

$$B_{U} \qquad \qquad B_{U} \qquad \qquad B_{U+W} \qquad \qquad B_{U+W} \qquad \qquad B_{U+W} \qquad \qquad B_{W} \qquad \qquad B_{W}$$

und stelle fest, in welchen dieser Räume der Vektor [0, -1, 0, -4] enthalten ist.

Aufgabe 53. Gib drei Untervektorräume U, V und W des \mathbb{R}^3 an, sodaß zwar $U \cap V = \{0\}$, $V \cap W = \{0\}$ und $U \cap W = \{0\}$ und $U + V + W = \mathbb{R}^3$, die Summe aber nicht direkt ist.

Aufgabe 54. Sei V ein Vektorraum und $U_i \subseteq V$ Unterräume.

(a) Zeige:

$$(U_1 \cap U_2) + (U_1 \cap U_3) \subseteq U_1 \cap (U_2 + U_3)$$

- (b) Gib ein Beispiel, in dem Gleichheit nicht gilt.
- (c) Zeige: Wenn U_2 in U_1 enthalten ist, dann gilt Gleichheit.

Aufgabe 55. Seien V ein Vektorraum der Dimension n und $U, W \subseteq V$ zwei Unterräume der Dimension k.

- (a) Überlege anhand des Dimensionssatzes, welche Dimensionen die Unterräume U+W und $U\cap W$ annehmen können.
- (b) Stelle fest, welche aus diesen Möglichkeiten tatsächlich auftreten:
 - (a) n = 7, k = 4.
 - (b) n = 6, k = 3.

Aufgabe 56. Sei V ein Vektorraum der Dimension n and seien U und W zwei verschiedene Unterräume der Dimension n-1. Zeige, daß $\dim(U\cap W)=n-2$.

Aufgabe 57. Im Vektorraum $V = \mathbb{R}^3$ betrachten wir den Unterraum

$$U = \mathcal{L}\left(\left\{ \begin{bmatrix} 0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}\right)$$

- (a) Bestimme eine Basis für den Faktorraum $V_{/U}$.
- (b) Bestimme ein Repräsentantensystem S für den Faktorraum $V_{/U}$, das zugleich ein Unterraum von V ist.
- (c) Welche der folgenden Abbildungen von $V_{/U}$ nach \mathbb{R} sind wohldefiniert (d.h., die rechte Seite hängt nicht von der Wahl des Repräsentanten ab)?

$$f([x]_U) = x_1 + x_2 + x_3$$
$$g([x]_U) = x_1 - x_2 - x_3$$