Aufgabe 72. Gegeben sei eine Blockdiagonalmatrix mit folgenden Jordanblöcken $J_k(\lambda)$:

$$A = \begin{bmatrix} J_2(0) & & & & & & & & & \\ & J_3(0) & & & & & & & & \\ & & J_3(0) & & & & & & & & \\ & & & J_1(1) & & & & & & & \\ & & & & J_2(1) & & & & & \\ & & & & & J_3(1) & & & & \\ & & & & & & J_5(1) \end{bmatrix}$$

wobei $J_k(\lambda)$ einen Jordanblock der Länge k zum Eigenwert λ bezeichnet. Berechne dim $\ker(\lambda I A)^k$ für $\lambda \in \{0,1\}$ und $0 \le k \le 20$ sowie Basen aller Eigenräume und Haupträume.

Aufgabe 73. Von einer Matrix $A \in \mathbb{C}^{20 \times 20}$ sind die folgenden Kerndimensionen bekannt:

\overline{k}	1	2	3	4	5	6	7
$\ker(A-2I)^k$	3	4	5	6	7	7	7
$\ker(A - I)^{\hat{k}}$ $\ker A^k$	3	6	6	6	6	6	7
$\ker A^k$				1			
$\ker(A+I)^k$	0	0	0	0	0	0	0
$\ker(A+2I)^k$	1	2	3	0 4	5	6	6

- (a) Zwei Zahlen in der Tabelle sind falsch. Finde und korrigiere sie.
- (b) Bestimme eine Jordansche Normalform und das Minimalpolynom von A.

Aufgabe 74. Die Matrix

$$A = \begin{bmatrix} 8 & 5 & 7 & 12 & 12 & 6 \\ 0 & -3 & 1 & -1 & -1 & 0 \\ -5 & -1 & -5 & -7 & -7 & -4 \\ 2 & -3 & 3 & 2 & 1 & 1 \\ -6 & 6 & -8 & -6 & -5 & -4 \\ 4 & -10 & 7 & 1 & 1 & 3 \end{bmatrix}$$

hat das charakteristische Polynom $\chi_A(x) = (x-1)^3(x+1)^3$.

- (a) Bestimme zu jedem Hauptraum $\ker(\lambda_i A)^{r_i}$ eine Basis $(u_1^{(i)}, u_2^{(i)}, \dots, u_{n_i}^{(i)})$ dergestalt, daß jeweils $(u_1^{(i)}, u_2^{(i)}, \dots, u_{m_{i,k}}^{(i)})$ eine Basis von $\ker(\lambda_i - A)^k$ ist. (b) Bestimme eine Jordansche Normalform J und das Minimalpolynom von A sowie eine re-
- guläre Matrix B, sodaß $B^{-1}AB = J$.

Aufgabe 75. Berechne und interpretiere die Auswertung der Exponentialfunktion des Kreuzprodukts:

$$e^{\vec{\varphi}\times}\vec{v} = \vec{v} + \vec{\varphi}\times\vec{v} + \frac{1}{2!}\vec{\varphi}\times(\vec{\varphi}\times\vec{v}) + \frac{1}{3!}\vec{\varphi}\times(\vec{\varphi}\times(\vec{\varphi}\times\vec{v})) + \dots$$

wobei $\vec{\varphi} := (\varphi, 0, 0)^t$. Hinweis: Matrixdarstellung der linearen Abbildung $\vec{\varphi} \times : \vec{x} \mapsto \vec{\varphi} \times \vec{x}$.