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Abstract. This is joint work with Flavia Colonna and David Singman. We
look at the homogeneous tree with two different geometric structures: the

hyperbolic and the Euclidean. The hyperbolic structure is where the tree is

unbounded. It corresponds to the hyperbolic 1-ball. In both cases, we are
looking for eigenfunctions which vanish on a ball of finite distance from the

origin. But in the hyperbolic case, a ball of finite radius is finite, whereas in the
Euclidean case, we are looking for eigenfunctions that vanish at the boundary,

which is a finite distance from the origin.

In the hyperbolic case, once we find an eigenvalue whose eigenfunctions
vanish on the sphere of radius N , we can extend the eigenfunction to the whoile

tree. It wll then have the property that for some number K, the function will

vanish on all spheres of radius N + mK. These functions can be radial or
non-radial.

With the Euclidean metric the tree is bounded, that is, the boundary is

a finite distance from the origin. and so the tree plus boundary becomes a
compact metric space.

The classical Weyl’s theorem on the eigenvalues of the Laplacian regards

a bounded manifold embedded in Euclidean n-space. It says that the number
of eigenvalues of the Laplacian whose eigenfunctions vanish at the boundary

satisfy the following property: If E(x) is the number of such eigenvalues less
than x, then there is a constant A, depending on n and the volume of the man-

ifold, such that E(x) = Axn/2 + o(x). For the Euclidean tree of homogeneity

q + 1, let E(x) be the number of positive eigenvalues of eigenfunctions that
vanish at the bounday and whose logarithm to the base q2 is less than x, then

E(x) = x+O(1), in fact it seems likely that for an integer n, E(n) = n−1. The

proof is not complete, but we have a partial proof and great many numerical
verifications.
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