Horn's problem, projection of orbital measures, and multivariate spline functions

Jacques Faraut

Assume that the eigenvalues $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n of two Hermitian matrices Aand B are known. What can be said about the eigenvalues of the sum A + B? This is Horn's problem. In 1962 Horn proposed a conjecture in terms of a system of inequalities. This conjecture has been proven by Klyachko in 1998. Following Frumkin and Goldberger (2006), and Coquereaux and Zuber (2018), we consider Horn's problem from a probabilistic viewpoint. The set \mathcal{O}_{α} of the Hermitian matrices with eigenvalues $\alpha_1, \ldots, \alpha_n$ is an orbit for the action of the unitary group U(n) acting on the space \mathcal{H}_n of Hermitian matrices. Assume that the random Hermitian matrix X is uniformly distributed on the orbit \mathcal{O}_{α} and, independently, the random Hermitian matrix Y on the orbit \mathcal{O}_{β} . The question is now: What is the joint distribution of the eigenvalues of the sum X + Y? We have established a formula for this distribution. It involves projections of orbital measures on the subspace D_n of diagonal matrices. The density of this distribution is piecewise polynomial, a multivariate spline function.

Institut de Mathématiques de Jussieu Sorbonne Université, Paris jacques.faraut@imj-prg.fr