On a class of random walks on locally finite groups.

Barbara Bobikau (joint work with A. Bendikov and Ch. Pittet)

Mathematical Institute University of Wroclaw

Graz 29.06.2009 - 04.07.2009

Barbara Bobikau (joint work with A. Bendikov and Ch. Pittet) On a class of random walks on locally finite groups.

• $G = \bigcup_{k=0}^{\infty} G_k$, where $\{G_k\}$ is an increasing sequence of finite groups.

(4月) (3日) (3日) 日

- $G = \bigcup_{k=0}^{\infty} G_k$, where $\{G_k\}$ is an increasing sequence of finite groups.
- *G* is <u>unimodular</u> & <u>amenable</u>.

<□> < 注→ < 注→ < 注→ □ 注

- $G = \bigcup_{k=0}^{\infty} G_k$, where $\{G_k\}$ is an increasing sequence of finite groups.
- *G* is <u>unimodular</u> & <u>amenable</u>.
- $\{X_i\}_{i=1}^{\infty}$ are G valued i.i.d., $X(n) = X(0) \cdot X_1 \cdot X_2 \cdot \ldots \cdot X_n$ is a random walk on G starting at X(0) = x.

伺 と くき とくき とうき

- $G = \bigcup_{k=0}^{\infty} G_k$, where $\{G_k\}$ is an increasing sequence of finite groups.
- *G* is <u>unimodular</u> & <u>amenable</u>.
- $\{X_i\}_{i=1}^{\infty}$ are G valued i.i.d., $X(n) = X(0) \cdot X_1 \cdot X_2 \cdot \ldots \cdot X_n$ is a random walk on G starting at X(0) = x.
- Assumption: $\mu = \mathbb{P}_{X_1}$ has the following form,

$$\mu=\sum_{k=0}^{\infty}c_km_k,$$

where m_k is the normalized Haar measure on G_k , $\{c_k\}_{k=0}^{\infty}$ is a sequence of positive reals such that $\sum_k c_k = 1$.

(本部) (王) (王) (王)

Measure μ has the following **important properties**:

Barbara Bobikau (joint work with A. Bendikov and Ch. Pittet) On a class of random walks on locally finite groups.

Measure μ has the following **important properties:** • μ is infinite divisible.

Barbara Bobikau (joint work with A. Bendikov and Ch. Pittet) On a class of random walks on locally finite groups.

伺 ト イヨト イヨト

Measure μ has the following **important properties:**

- μ is infinite divisible.
- There exists weakly continuous convolution semigroup (μ_t)_{t>0} of probability measures on G such that μ = μ₁.
 In particular,

$$\mathbb{P}(X(n) \in B | X(0) = e) = \mu_n(B).$$

- 4 E K 4 E K

Measure μ has the following **important properties**:

- μ is infinite divisible.
- There exists weakly continuous convolution semigroup (μ_t)_{t>0} of probability measures on G such that μ = μ₁.
 In particular,

$$\mathbb{P}(X(n) \in B | X(0) = e) = \mu_n(B).$$

• Put $\mu_t(x) := \mu_t(\{x\})$, then for $x \in G_k \setminus G_{k-1}$,

$$\mu_t(x) = \sum_{n \ge k} \frac{C_n(t)}{|G_n|}, \quad C_n(t) = (\sum_{i \le n} c_i)^t - (\sum_{i \le n-1} c_i)^t, \quad C_0(t) = c_0^t.$$

In particular,

۲

$$\mu_t(e) = \sum_{n\geq 0} C_n(t)/|G_n|.$$

• For any finite $B \subset G$,

$$\mathbb{P}(X(t)\in B|X(0)=e)=\mu_t(B)\sim \mu_t(e)|B| \quad ext{at} \quad \infty.$$

Theorem 1.

 $\{X(n)\}$ is recurrent if and only if

$$\sum_{n=1}^{\infty} \frac{1}{|G_n|(1-\mu(G_n))|} = \infty.$$

- 4 回 > - 4 回 > - 4 回 >

Theorem 1.

 $\{X(n)\}$ is recurrent if and only if

$$\sum_{n=1}^{\infty} \frac{1}{|G_n|(1-\mu(G_n))} = \infty.$$

Example: Let $G = S_{\infty} = \bigcup_{n>1} S_n$. Put $\sigma(n) = \sum_{k>n} c_k$, then $\overline{\{X(n)\}}$ is recurrent if and only if

$$\sum_{n\geq 1}\frac{1}{n!\sigma(n)}=\infty.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem 1.

 $\{X(n)\}$ is recurrent if and only if

$$\sum_{n=1}^{\infty} \frac{1}{|G_n|(1-\mu(G_n))} = \infty.$$

Example: Let $G = S_{\infty} = \bigcup_{n>1} S_n$. Put $\sigma(n) = \sum_{k>n} c_k$, then $\overline{\{X(n)\}}$ is recurrent if and only if

$$\sum_{n\geq 1}\frac{1}{n!\sigma(n)}=\infty.$$

In particular, let $\sigma(n) \asymp n^{lpha}/n!$, then,

- X(n) is recurrent if $\alpha \leq 1$,
- X(n) is transient if $\alpha > 1$.

伺 ト イヨト イヨト

Recurrence/transience of random walks.

- Brofferio, S., Woess, W.: On transience of card shuffling, Proc. Amer. Math. Soc 129 (2001), No. 5, 1513-1519.
- Lawler, G.F.: *Recurrence and transience for a card shuffling model*, Combinatorics, Probability and Computing 4 (1995), 133-142.
- Flatto, L., Pitt, J.: *Recurrence criteria for random walks on countable abelian groups*, Illinois J. Math. 18 (1974), 1-19.
- Darling, D., Erdös, P.: *On the recurrence of a certain chain*, Proc. Am. Math. Soc. 19 (1968), 336-338.

4 3 5 4 3 5

Theorem 2.

Let $F : \mathbb{R}_+ \to \mathbb{R}_+$, F(t) = o(t) at ∞ . Then $\exists \mu_t, \mu'_t$ such that:

御 と く き と く き と

Theorem 2.

Let $F : \mathbb{R}_+ \to \mathbb{R}_+$, F(t) = o(t) at ∞ . Then $\exists \mu_t, \mu'_t$ such that:

1) *G* is <u>amenable</u>, hence $\mu_n(e) = \exp(-n \cdot o(1))$, can be made as close as possible to $n \to \exp(-n)$ by an appropriate choice of $\{c_k\}$.

₽ ► < Ξ ► < Ξ ►

Theorem 2.

Let $F : \mathbb{R}_+ \to \mathbb{R}_+$, F(t) = o(t) at ∞ . Then $\exists \mu_t, \mu'_t$ such that:

G is <u>amenable</u>, hence μ_n(e) = exp(-n ⋅ o(1)), can be made as close as possible to n → exp(-n) by an appropriate choice of {c_k}.
 G is <u>not finitely generated</u>, hence μ'_n(e) → 0 at ∞ can be made as slow as possible by an appropriate choice of {c_k}.