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Introduction.

G =
⋃∞

k=0 Gk , where {Gk} is an increasing sequence of finite
groups.

G is unimodular & amenable.

{Xi}∞i=1 are G - valued i.i.d., X (n) = X (0) · X1 · X2 · . . . · Xn is
a random walk on G starting at X (0) = x .

Assumption: µ = PX1 has the following form,

µ =
∞∑

k=0

ckmk ,

where mk is the normalized Haar measure on Gk , {ck}∞k=0 is a
sequence of positive reals such that

∑
k ck = 1.
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Measure µ has the following important properties:

1 µ is infinite divisible.
2 There exists weakly continuous convolution semigroup (µt)t>0

of probability measures on G such that µ = µ1.
In particular,

P(X (n) ∈ B|X (0) = e) = µn(B).

3 Put µt(x) := µt({x}), then for x ∈ Gk\Gk−1,

µt(x) =
∑
n≥k

Cn(t)

|Gn|
, Cn(t) = (

∑
i≤n

ci )
t−(

∑
i≤n−1

ci )
t , C0(t) = ct

0.
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Basic properties of µ.

In particular,

µt(e) =
∑
n≥0

Cn(t)/|Gn|.

For any finite B ⊂ G ,

P(X (t) ∈ B|X (0) = e) = µt(B) ∼ µt(e)|B| at ∞.
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Theorem.

Theorem 1.

{X (n)} is recurrent if and only if

∞∑
n=1

1

|Gn|(1− µ(Gn))
=∞.

Example: Let G = S∞ =
⋃

n>1 Sn. Put σ(n) =
∑

k>n ck , then
{X (n)} is recurrent if and only if∑

n≥1

1

n!σ(n)
=∞.

In particular, let σ(n) � nα/n!, then,

X (n) is recurrent if α ≤ 1,

X (n) is transient if α > 1.
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Theorem 2.

Let F : R+ → R+, F (t) = o(t) at ∞. Then ∃µt , µ
′
t such that:

1) G is amenable, hence µn(e) = exp(−n · o(1)), can be made as
close as possible to n→ exp(−n) by an appropriate choice of {ck}.
2) G is not finitely generated, hence µ′n(e)→ 0 at ∞ can be made
as slow as possible by an appropriate choice of {ck}.
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