The Boundary Action of the Basilica Group

Daniele D'Angeli Université de Genève

joint work with A. Donno, M. Matter and T. Nagnibeda

Graz, 29/06/2009

Workshop on Boundaries 2009

The Basilica Group

The Basilica group B is a group of automorphisms of the rooted binary tree

o)
$$X = \{0, 1\}$$

•) T = rooted binary tree, $VT = X^*$;

 $\circ) \ B < Aut(T);$

 \circ) *B* is a self-similar group generated by the automorphisms

$$a = (b, id)e$$
 $b = (a, id)\epsilon$

•) $\partial T =$ space of ends = infinite words in $\{0, 1\} = X^{\omega}$.

It was introduced by R. Grigorchuk and A. Żuk as the group generated by the following 3-state automaton.

Some properties:

 ◊) B is not subexponentially amenable (Grigorchuk-Żuk) but it is amenable (Bartholdi-Virag) (see also Kaimanovich Münchhausen Trick);

◊) *B* is the *Iterated Monodromy Group* of the polynomial $z^2 - 1$ (Nekrashevych).

Basilica Schreier graphs

Each vertex of the *n*-th level of *T* is identified with an element of $\{0,1\}^n$; the boundary of *T* is identified with $\{0,1\}^{\omega}$.

 \cdots

 Γ_n is the Schreier graph of B w.r.t. the subgroup $Stab_B(w)$, with |w| = n

Remark The map $\pi_{n+1} : \Gamma_{n+1} \longrightarrow \Gamma_n$ defined as

$$\pi_{n+1}(x_1 \dots x_n x_{n+1}) = x_1 \dots x_n$$

is a graph covering of degree 2.

Convergence in the space of rooted graphs

Definition The sequence of rooted graphs (Σ_n, o_n) converges (in the sense of Gromov-Hausdorff) to the graph (Σ, o) if for all R > 0 there exists N s.t. for every n > N one has $B_{\Sigma_n}(o_n, R) = B_{\Sigma}(o, R)$.

Let $\xi = x_1 x_2 \dots \in \partial T$, we set $\xi_n = x_1 \dots x_n$. - $B \curvearrowright \partial T \rightarrow$ orbital Schreier graphs Γ_{ξ} . We have $(\Gamma_n, \xi_n) \longrightarrow (\Gamma_{\xi}, \xi)$.

Aim: Describe all limits of finite Schreier graphs in this topology. In other words classify infinite Schreier graphs Γ_{ξ} , $\xi \in \partial T$.

Motivations: Limit graphs of $\{\Gamma_n\}$ can be studied from different points of view:

- *spectral analysis* (Grigorchuk, Bartholdi, Nekrashevych, Teplyaev, Šunić et al.)
- *asymptotic tree entropy* (R. Lyons)
- dimer model (D-Donno-Nagnibeda, Teufl-Wagner)
- *Ising model* (D-Donno-Nagnibeda)
- *sandpile model* (Matter-Nagnibeda)

Also more generally: spectral analysis + probability + statistical physics on fractals (Barlow, Teplyaev, Lapidus, Sabot, Kigami, Woess, Grabner et al.) **RESULTS**:

• Topological classification of $\{\Gamma_{\xi}\}_{\xi \in \{0,1\}^{\omega}}$ with respect to the number of ends.

- Measurable classification.
- Classification up to isomorphism.

Let $\xi \in \partial T$ and Γ_{ξ} the orbit Schreier graph of the action of B on ξ . Let m be the uniform measure on ∂T .

Theorem $\forall \xi \in \partial T$, Γ_{ξ} has 1, 2 or 4 ends. More precisely (\diamond) $\partial T = E_1 \sqcup E_2 \sqcup E_4$; with $E_i = \{\xi \in \partial T : \Gamma_{\xi} \text{ has } i \text{ ends}\}$ where $E_4 := \{w0^{\omega}, w(01)^{\omega} : w \text{ any finite word}\}$ and $E_1 = \{\alpha_1 \beta_1 \alpha_2 \beta_2 \dots$ with $\alpha_i, \beta_i \in \{0, 1\}$ s.t. both $\{\alpha_i\}_{i \ge 1}$ and $\{\beta_i\}_{i \ge 1}$ have infinitely many 1's}. (\diamond) $m(E_1) = 1$.

Remark The action of B on ∂T consists of infinitely many orbits. E_4 is exactly one orbit, both E_2 and E_1 consist of infinitely many orbits.

Classification up to isomorphism (of un-rooted graphs)

The case of 4 ends:

Corollary E_4 is an isomorphism class.

$$A_k := \left\{ n \in \mathbb{Z}; n \equiv 2^k \mod 2^{k+1} \right\}, \ k \ge 0.$$

$$\mathbb{Z} = \bigsqcup_{k \ge 0} A_k$$

 $\mathcal{R}_1 = \mathcal{R}_2 = \mathbb{Z}$. Attach to each vertex $n \in A_k$ a (2k+1)-decoration by its unique vertex of degree 2. Do similarly for \mathcal{R}_2 (taking a (2k+2)-decoration). \mathcal{R}_1

The case of 2 ends:

Theorem There exist exactly two isomorphism types of 2-ended Schreier graphs, Γ_{odd} and Γ_{even} .

The graph Γ_{odd} : take a copy of \mathbb{Z} and for every $k \geq 0$ consider the partition of \mathbb{Z}

$$B_k := \left\{ n \in \mathbb{Z}; n \equiv \frac{1 - (-2)^k}{3} \mod 2^{k+1} \right\}.$$

Attach to each vertex $n \in B_k$ a (2k + 1)decoration (the same for Γ_{even} taking a (2k + 2)-decoration).

A finite part of Γ_{odd}

Let $\xi \in E_2$ such that $\xi = \alpha_1 \beta_1 \alpha_2 \beta_2 \dots$ If ξ is such that the sequence $\{\alpha_i\}_{i \ge 1}$ (resp. $\{\beta_i\}_{i \ge 1}$) has a finite number of 1's, then the sequence $\{\Gamma_n\}$ converges to Γ_{even} (resp. Γ_{odd}).

The case of 1 end:

Theorem The set E_1 of graphs with one end contains uncountably many classes of isomorphism each one of measure 0.

Theorem Let $\xi \in E_1$. Either (1) $\xi = u1^{\omega}$ for some finite words uor (2) $\xi = 0^k 1(0x_1^{(0)} \dots 0x_{m_0}^{(0)})1^{t_1}(0x_1^{(1)} \dots 0x_{m_1}^{(1)})1^{t_2}(0x_1^{(2)} \dots 0x_{m_2}^{(2)})\dots$ with $x_i^{(j)} \in \{0, 1\}$ Then - $\Gamma_{\xi} \simeq \Gamma_{\eta}$ if ξ and η are as in (1); - $\Gamma_{\xi} \not\simeq \Gamma_{\eta}$ if ξ is as in (1) and η as in (2); - $\Gamma_{\xi} \simeq \Gamma_{\eta}$ if ξ and η are as in (2) so that $\xi = 0^g 1(0x_1^{(0)} \dots 0x_{m_0}^{(0)})1^{t_1}(0x_1^{(1)} \dots 0x_{m_1}^{(1)})1^{t_2}(0x_1^{(2)} \dots 0x_{m_2}^{(2)})\dots$ $\eta = 0^h 1(0y_1^{(0)} \dots 0y_{n_0}^{(0)})1^{s_1}(0y_1^{(1)} \dots 0y_{n_1}^{(1)})1^{s_2}(0y_1^{(2)} \dots 0y_{n_2}^{(2)})\dots$ and there exist $R, Q \ge 1$ such that, $\forall k \ge 0$,

 $m_{R+k} = m_{Q+k} \qquad t_{R+1+k} = t_{Q+1+k}$ either $y_p^{(Q+k)} = x_p^{(R+k)}$ or $y_p^{(Q+k)} = 1 - x_p^{(R+k)}$, with $p = 1, \dots, m_{R+k}$

and
$$g + \sum_{i=1}^{R} t_i + \sum_{i=0}^{R-1} m_i = h + \sum_{k=1}^{Q} s_i + \sum_{i=0}^{Q-1} n_i$$

FINAL REMARKS

- Heuristic correspondence with the limit space.

- Similar analysis can be done for other self-similar groups, in particular for other IMG.

- Unimodular random graphs.

