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Let X be a locally finite connected graph. A ray
is a sequence of distinct vertices vg, v1, ... such that v,
is adjacent to v,y for each 7+ = 1,2,.... For a ray to
exist the graph X has to be infinite.

We say that two rays R, R’ belong to the same end
w if for no finite subset F of VX or FX do Ry and Ro
eventually lie in distinct components of X \ F'. We say
that w is thin if it does not contain infinitely many
vertex disjoint rays Thomassen and Woess (1993) de-
fine an end w to be thick if it is not thin.

Thomassen and Woess also define an accessible
graph. A graph X is accessible if there is some nat-
ural number k£ such that for any two ends w; and ws
of X, there is a set E of at most £ edges in X such
that F separates w; and wy i.e. removing E from X
disconnects the graph in such a way that rays Ri, R»
of wq,wsy respectively eventually lie in distinct compo-
nents of X \ FE.



A finitely generated group G is said to have more
than one end (e(G) > 1) if its Cayley graph X (G, S)
with respect to a finite generating set S has more than
one end. This property is independent of the gener-
ating set S chosen. Stallings (1971) showed that if
e(G) > 1 then G splits over a finite subgroup, i.e. ei-
ther G = A*c B where B is finite C # A,C # B or G
is an HNN extension G = Axc = (A, t|t et = 0(c)),
where C < A and 0 : C' — A is an injective homomor-
phism.

A group is accessible if the process of successively
factorizing factors that split in a decomposition of G
eventually terminates with factors that are finite or
one ended. Thomassen and Woess show that the Cay-
ley graph of a finitely generated group G is accessible
if and only if G is accessible. In a number of papers I
have given examples of inaccessible groups and so not
every locally finite connected graph is accessible.

Let w be an end of X. Following Thomassen and
Woess define k(w) to be the smallest integer k such
that w can be separated from any other end by at
most k vertuces. If this number does not exist put

k(w) = 0.

Thomassen and Woess show that X is accessible



if and only if k(w) < oo for every end w. We say that
an end w is special if k(w) = oo.

I will describe a locally finite, connected, inacces-
sible, vertex transitive graph X which is not quasi-
isometric to a Cayley graph. The properties of being
inaccessible is invariant under quasi-isometry.

Woess asked in 1989 if every vertex transitive lo-
cally finite graph is quasi-isometric to a Cayley graph.
It was shown in Eskin, Fisher and Whyte in 2007
that the Diestel-Leader graph DL(m,n), m # n is not
quasi-isometric to a Cayley graph, answering the ques-
tion of Woess. The graph described here is another
example.

In 1998 Mary Jones and I constructed a finitely
generated group G for which G = A x¢ G where C' is
infinite cyclic. The vertex set of the graph X is the
set of left cosets of A in G. The construction of G is
as follows.



The graph

Let

A={ablt? =1,a ' ba=b"1).

Then a” is in the centre of A and A/(a?) = S3. Also
A is generated by a® and a?b since

a 3(a’b)a’ = a*b !,

and so

b = bt € (a®,a’b).

The group A has a lattice of subgroups as in Fig 1.
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Fig 1

The group G is generated by four elements a, b, c
and d, subject to an infinite set of defining relations
as follows. The elements a, b satisfy the relations of A
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and in fact generate a subgroup of GG isomorphic to A.

Then ¢~ 'de = d?, so that ¢, d generate a subgroup
isomorphic to the Baumslag-Solitar group BS(1,2).
Also a® = d is another relation. The remaining re-
lations are defined inductively. Put d = di,a = a;
and d;;q1 = cd;c~ 1 so that d,%ﬂ = d;.

Put dy = d9 and ag = a?b. Then as above the
subgroup A = {(a, b) = (ag,d1). Now define inductively
a;4+1 = aid;flai,biﬂ = a;ldi+1aidi__|_11 and add the
relations b7, ; = 1,a;j1bi+1ai+1 = b;&l for each 7 to
make A;11 = (a;11,b;41) = A. Note that for ¢ =1 we
have a = a1 = CLle_la() = yx~ 'y as above. The group
(G is best understood in terms of the subgroup lattice
shown in Fig 2.
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Fig 2

It can be seen that G = Axc G where A = (a,b) =
<a0,d1> and C = <CL1>.



Let D = (dy). Let Y be the G-graph with two
orbits of vertices VY = {gA, gD|g € G} and two orbits
of edges EY = {(g94,9D), (9D, gcD)|g € G}.

In Y the vertex A is incident with [A, D] = 9
edges, as is every vertex in the same orbit. The vertex
D is incident with 4 edges. One edge in one edge orbit
connects D to A and there are three edges in the other
orbit connecting D to ¢D,c¢ ' D and de~!D. Note that
d = d; fixes the edge (D, cD) and transposes the edges
(D,c™ D), (D,dc D). If one removes the edges of Y’
in the first orbit one is left with a set of 3-regular
trees. If one directs these subgraphs by putting an
arrow from D to cD then every vertex has one edge
pointing away from it and two pointing towards it as
in Fig 3.



Fig 3
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The graph Y is connected because G is generated
by A,D and c. One obtains a vertex transitive G-
graph X from Y by taking one orbit of vertices and
joining two vertices by an edge if they are distance two
apart in Y. If the orbit chosen contains D then each
vertex will have degree 10. It is easier to work with
the graph Y which is quasi-isometric to X.

In fact in Y each of the A vertices is a cut point.
There is a structure tree decomposition of Y, VY =
C'U B where C' is the set of cut points (in this case
the vertices in the orbit of A) and B is the set of 2-
blocks (maximal 2-connected subgraphs). In this case
each 2-block is quasi-isometrc to the original graph Y.
The quasi-isometry can be achieved by a pair of folding
operations.

Removing the vertex A from Y results in 3 com-
ponents. In each 2-block a vertex in the orbit of A has
degree 3.

It is now indicated why Y is inaccessible and not
quasi-isometric to a Cayley graph.

Let Z be a subgraph of Y that is a 3-regular tree.
There are countably many such subgraphs. Any two
rays in Z are in the same end. This is because any
two vertices of Y that are at the same level (indicated
by a dotted line in Fig 3) are joined by a path in Y
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that contains no other edge of Z. Thus there is an end
corresponding to Z. This end w is special (k(w = oo.
Not every special end of Y corresponds to a subgraph
like Z. However there are only countably many special
ends. An end belonging to a subgraph like Z is called
very special.

Suppose Y is quasi-isometric to a Cayley graph
W. Then W will be inaccessible with countably many
special ends. A quasi-isometry between Y and W will
take a very special end of Y to a very special end of
W, i.e. an end corresponding to a subgraph which is
quasi-isometric to a regular tree.

Inaccessible Cayley graphs with countably many
special ends do exist. However in such a Cayley graph
if an end is determined by rays in a subgraph, that
subgraph would have to be one-ended. We have seen
that the 3-regular tree Z has infinitely many ends.

I do not think that Y has any one-ended locally
finite subgraphs.
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