Boundaries of the generalized Pascal triangles and larger graded graphs

Alexander Gneden

Utrecht University
The general combinatorial framework

Weighted Bratteli diagram is an infinite directed graph with a vertex set $T = \bigcup_{n \geq 0} T_n$ such that

- vertices are organized in *finite* levels T_n, with a sole root vertex \emptyset comprising T_0,
- each edge connects a vertex on level n with a vertex on level $n + 1$, for $n = 0, 1, \ldots$,
- each vertex has at least one follower and at least one predecessor (except \emptyset)
- each edge is endowed with a positive weight (or one considers multiple edges if the weights are integer).
The boundary problem

For a standard (directed) finite path \((s_0, s_1, s_2, \ldots, s_n) \in T_0 \times \ldots \times T_n\), the weight is the product of weights of edges \(s_j \to s_{j+1}\) along the path.

Let \(\mathcal{P}\) be the set of probability laws for transient Markov chains \(S = (S_n, n \geq 0)\) on \(T\) with the properties:

- \(S_n\) assumes values in \(T_n\), in particular \(S_0 = \emptyset\),
- Gibbs condition (Vershik-Kerov’s centrality) holds: conditionally given \(S_n = s_n\) for some \(s_n \in T_n\), each path \(S_0 = s_0, \ldots, S_{n-1} = s_{n-1}, S_n = s_n\) has probability proportional to its weight.
The set \mathcal{P} is an infinite Choquet simplex, i.e. a compact convex set with the property of uniqueness of barycentric representation of a generic element as a mixture of extremes.

The boundary problem for T asks one to describe (as explicitly as possible) the set of extreme elements $\text{ext}\mathcal{P}$ of \mathcal{P}.

Each $P \in \text{ext}\mathcal{P}$ corresponds to an ergodic Markov chain (S_n), with trivial tail σ-algebra.
The Gibbs condition fixes transition probabilities for the time-reversed Markov chain \((\ldots, S_1, S_0)\).

Each \(P \in \mathcal{P}\) is uniquely determined by a nonnegative function \(\phi\) on \(T\) which is normalized by the condition \(\phi(\emptyset) = 0\) and satisfies a backward recursion

\[
\phi(s) = \sum_{s' \in T_{n+1}: s \rightarrow s'} \text{weight}(s \rightarrow s') \phi(s'), \quad s \in T_n, \quad n \geq 0.
\]

The relation between \(P\) and \(\phi\) is

\[
P(S_0 = s_0, \ldots, S_n = s_n) = (\text{weight of } s_0, \ldots, s_n) \times \phi(s_n).
\]
Some roots from 60’s-70’s

- boundary theory for Polya’s urn models: Blackwell, Kendall
- AF-algebras, dimension groups: Bratteli, Elliot, Effros et al
- characters of the infinite symmetric group \mathfrak{S}_∞: Vershik and Kerov
- exchangeability: Diaconis and Freedman, Kingman
Examples of ‘big’ boundaries

1. The Young lattice \mathbb{Y}, with \mathbb{Y}_n being the set of partitions of integer n, and simple edges (appending a box to the Young diagram). The extreme boundary is parameterizable by

$\{(\alpha_j), (\beta_j): \alpha_1 \geq \alpha_2 \cdots \geq 0, \beta_1 \geq \beta_2 \cdots \geq 0, \sum_j (\alpha_j + \beta_j) \leq 1\}$.

(Vershik and Kerov)

2. A composition poset: vertices on level n are compositions of integer n (like $(3, 5, 3, 2)$). All edges are simple, except when a series of 1’s is increased (e.g. $(2, 1, 1, 2) \rightarrow (2, 1, 1, 1, 2)$). Each element of the extreme boundary can be identified with some closed subset of $[0, 1]$.

Further relatives of \mathbb{Y} with rich boundaries were studied by Vershik, Kerov, Okounkov, Olshanski, Kingman, G, Pitman,
Generalized Pascal triangles

The generalized Pascal graph T has weights
- $\ell_{n,k}$ for $(n, k) \rightarrow (n + 1, k)$ (transition ‘0’),
- $r_{n,k}$ for $(n, k) \rightarrow (n + 1, k + 1)$ (transition ‘1’)

A path is encoded into 0-1 sequence.

Let $D = (D_{n,k}, (n, k) \in T)$ denote the dimension function (partition function, statistical sum . . .), So $D_{n,k} = \text{sum of weights of paths from (0, 0) to (n, k)}$, and satisfies the forward recursion

$$D_{n,k} = r_{n-1,k-1}D_{n-1,k-1} + \ell_{n-1,k}D_{n-1,k}, \quad 0 \leq k \leq n. \quad (1)$$

‘Named’ triangles (Pascal, Stirling, Euler, Lah, etc) derive their names from the numbers $D_{n,k}$.
\mathcal{P} can be identified with the convex set of nonnegative solutions to the backward recursion

$$
\phi_{n,k} = \ell_{n,k} \phi_{n+1,k} + r_{n,k} \phi_{n+1,k+1}, \quad 0 \leq k \leq n; \quad \phi(0,0) = 1. \quad (2)
$$

Note: each solution to (2) can be recovered from either of sequences $(\phi_{n,n}, \; n \geq 0)$ or $(\phi_{n,0}, \; n \geq 0)$ by iterated (weighted) differencing, thus the boundary problem reduces to finding all such sequences with nonnegative differences of any order.
For the related random walk S we have

$$P_\phi(S_0 = s_0, \ldots, S_n = (n, k)) = \text{(weight of path)} \times \phi_{n,k},$$

so the marginal distributions of S are

$$P_\phi(S_n = (n, k)) = D_{n,k} \phi_{n,k}.$$

The backward transition probabilities do not depend on ϕ

$$P_\phi(S_{n-1} = (n - 1, j) | S_n = (n, k)) = \frac{D_{n-1,j}}{D_{nk}} (\ell_{n-1,j} \delta_{jk} + r_{n-1,j} \delta_{j, k-1}).$$
The Martin kernel is the ratio
\[
\frac{D_{n,k}^{\nu,\kappa}}{D_{\nu,\kappa}} \quad 0 \leq \kappa \leq \nu, \quad 0 \leq n \leq \nu,
\]
where the extended dimension \(D_{n,k}^{\nu,\kappa} = \) sum of weights of paths from \((n, k)\) to \((\nu, \kappa)\) (so \(D_{n,k} = D_{0,0}^{n,k}\)).

- The **Martin boundary** \(\partial_M \mathcal{P}\) is the set of weak limits of elementary measures corresponding to functions

\[
\phi_{n,k}^{\nu,\kappa} := \frac{D_{n,k}^{\nu,\kappa}}{D_{\nu,\kappa}}
\]

where \(\nu \to \infty\) and \(\kappa = \kappa(\nu)\).

- The **sequential boundary** \(\partial_{\downarrow} \mathcal{P}\) if defined by taking limits in (4) along infinite paths.

We have \(\text{ext} \mathcal{P} \subset \partial_{\downarrow} \mathcal{P} \subset \partial_M \mathcal{P}\), but the inclusions may be strict (though in pathological examples).
The Pascal graph: de Finetti’s theorem

For the Pascal graph $\ell_{n,k} = r_{n,k} = 1$.

The ratios

$$\phi_{n,k} = \frac{(\nu-n)}{(\kappa-k)}$$

converge iff for $\kappa = \kappa(\nu)$ there exists

$$p := \lim_{\nu \to \infty} \frac{\kappa}{\nu}$$

the asymptotic frequency of 1’s. Since the graph describes branching of orbits of $\mathcal{S}_\infty = \bigcup_n \mathcal{S}_n$ acting on $\{0, 1\}^\infty$, de Finetti’s theorem follows: every extreme exchangeable 0-1 sequence is a Bernoulli(p) sequence.

Differencing $(\phi_{n,n}, n \geq 0)$ shows that the sequence must be completely monotone \Rightarrow de Finetti’s theorem is equivalent to ‘Hausdorff’s moments problem’ on $[0, 1]$.

Boundaries of Pascal pyramids (action of permutations on $\{1, \ldots, d\}^\infty$) and de Finetti’s theorem for \mathbb{R}^∞ derive from this basic result.
\textbf{q-exchangeability, the q-Pascal graph}

Kerov ’85, G and Olshanski ’09

Two problems:

1. for $q > 0$, describe quasi-invariant under S_∞ measures on $\{0, 1\}^\infty$, with cocycle

\[q^{-c(\sigma, w)}, \quad \sigma \in S_\infty, \ w = w_1 w_2 \cdots \in \{0, 1\}^\infty \]

\[c(w, \sigma) := \lim_n \#(\text{inversions in } w_1 \ldots w_n) - \#(\text{inversions in } (\sigma w)_1 \ldots (\sigma w)_n), \]

2. for q a power of prime number, describe (all distributions for) random subspaces of F_q^∞ invariant under $GL(\infty, F_q)$,

are reduced to the boundary problem for the q-Pascal triangle, which has the weights

\[\ell_{nk} = 1, \ r_{nk} = q^{n-k}, \quad (n, k) \in T. \]
For the q-Pascal graph the Martin kernel is
\[
\left(\frac{\nu - n}{\nu - k}\right)_q / \left(\frac{\nu}{n}\right)_q,
\]
where the q-binomial coefficients are defined via q-integers
\[[n]_q := \frac{(1 - q^n)}{(1 - q)}\]. For $q < 1$ this converges only if $\nu(\nu) = m$ for large ν or $\nu \to \infty$, so the boundary $\text{ext} \mathcal{P} = \partial_M \mathcal{P}$ is discrete. Explicitly, the limits are
\[
\phi_{nk}(m) = \frac{q^{(m-k)(n-k)}(1 - q) \cdots (1 - q^m)}{(1 - q) \cdots (1 - q^{m-k})}, \quad k \leq m
\]
A q-analogue of Bernoulli coin-tossing is the q-shuffle: a word $1 \ldots 1000 \ldots (m 1's)$ is re-arranged by iterated choices of a symbol in the ξth position, where ξ has geometric distribution.

Similar q-analogues of de Finetti’s theorem hold for sequences on larger ordered alphabets (G and Olshanski ’09).
Parameterization of the boundary

G and Pitman observed:

The sequential boundary $\partial \downarrow \mathcal{P}$ is homeomorphic to a closed subset of $[0, 1]$ by the virtue of function

$$P \mapsto P(S_1 = (1, 1)) = \phi_{1,1}^0,1$$

(probability of the first ‘1’).

Proof: S_n under distribution $\phi^{\nu,\kappa}$ is strictly stochastically larger than S_n under distribution $\phi^{\nu,\kappa'}$ provided that $\kappa' > \kappa$.

This is helpful to identify the topology of the boundary.
The case of discrete boundary

Theorem

Suppose for \(m = 0, 1, \ldots \) there are distributions \(P_m \in \mathcal{P} \) such that \(P_m(S_n = (n, m)) \to 1 \) as \(n \to \infty \), then each \(P_m \) is extreme (and satisfies \(S_n = (n, m) \) for large \(n \) a.s.).

If above that \(P_m(S_1 = (1, 1)) \to 1 \) as \(m \to \infty \) then \(P_m \) converge to the trivial distribution \(P_\infty \) with \(S_n = (n, n) \) \(P_\infty \)-a.s., and in this case

\[
\text{ext} \mathcal{P} = \partial \mathcal{M} \mathcal{P} = \{ P_0, P_1, \ldots, P_\infty \}.
\]
The case of continuous boundary

Theorem

Suppose there is a sequence of positive constants \(\{c(n); n = 0, 1, \ldots\} \) with \(c(n) \to \infty \), and for each \(t \in [0, \infty] \) there is a distribution \(P_t \in \mathcal{P} \) which satisfies

\[
S_n \sim c(n)t \quad P_t \text{ a.s.}
\]

Suppose the mapping \(t \mapsto P_t \) is a continuous injection from \([0, \infty]\) to \(\mathcal{P} \), with 0 and \(\infty \) corresponding to the trivial Markov chains \((S_n \equiv 0 \text{ respectively } S_n \equiv n \text{ a.s.}) \). Then a path \(\{\kappa(\nu); \nu = 0, 1, \ldots\} \) induces a limit if and only if \(\kappa(\nu)/c(\nu) \to t \) for some \(t \in [0, \infty] \), in which case the limit is \(P_t \). Moreover,

\[
\text{ext}\mathcal{P} = \partial_M \mathcal{P} = \{P_t, t \in [0, \infty]\}.
\]
Stirling triangles

A parametric class of triangles (G and Pitman ’05), a subclass of Stirling triangles introduced by Kerov.

The generalized Stirling triangle has \(r_{nk} = 1 \) and \(\ell_{nk} = (n + 1) - \alpha(k + 1) \) for \(-\infty < \alpha < 1\).

For \(\alpha = -\infty \) take \(\ell_{nk} = k + 1 \).

The generalised Stirling numbers \(D_{nk} = \binom{n+1}{k+1}_\alpha \) are the connection coefficients in

\[
(z)_n = \sum_{k=1}^{n} \binom{n}{k}_\alpha \alpha^n (z/\alpha)_n,
\]

(where \(z_n = z(z + 1) \ldots (z + n - 1) \)). These are the Stirling numbers of the second kind for \(\alpha = -\infty \), and signless Stirling numbers of the first kind \(\alpha = 0 \).
The interest to Stirling triangles is motivated by applications to

- Kingman’s partition structures
- Bayesian nonparametric inference, species sampling
- urn models
- excursions of Brownian motion and recurrent Bessel processes
- random permutations and Ewens’ sampling formula of population genetics
A phase transition for Stirling triangles

- For $-\infty \leq \alpha < 0$ the extreme boundary is discrete. For $m = 1, 2, \ldots$

 $$\phi_{n,0}(m) = \frac{1}{(m|\alpha| + 1)_n} \quad \text{for} \quad -\infty < \alpha < 0,$$

 and

 $$\phi_{n,0}(m) = \frac{1}{m^n} \quad \text{for} \quad \alpha = -\infty.$$

- For $\alpha = 0$ the extreme boundary becomes continuous,

 $$\phi_{n,0}(t) = \frac{1}{(t + 1)_n} \quad t \in [0, \infty].$$
For $0 < \alpha < 1$ the boundary is also continuous, and

$$
\phi_{n,0}(t) = \frac{t\alpha}{(1-\alpha)_n \Gamma(1-\alpha)} g_\alpha(t) \int_0^1 y^{n-\alpha}(1-y)^{-1-\alpha} g_\alpha(t(1-y)^{-\alpha}) dy
$$

where g_α is related to the stable density (with Laplace transform $e^{-\lambda^\alpha}$) via

$$
f_\alpha(y) = \alpha y^{-1-\alpha} g_\alpha(y^{-\alpha}).
$$

S_n has the same law as the number of blocks in a partition of \{1, \ldots, n\} induced by a Bessel process conditioned on the value of local time t, and $S_n \sim tn^\alpha$ a.s.
The Eulerian triangle

\[\ell_{nk} = k + 1, \quad r_{nk} = n - k + 1 \]
the dimension is the Eulerian number
\[D_{n,k} = \binom{n+1}{k} \]
(which enumerates permutations with a given number of descents).

The extreme elements of \(\mathcal{P} \) are given by

\[\phi_{n,k}(m) = \frac{1}{(n+1)!} \prod_{i=-k}^{n-k} \left(1 + \frac{i}{m} \right) \]

with \(m \in \mathbb{Z} \cup \{ \infty \} \).

(G and Olshanski '06)

As \(P \) runs over \(\mathcal{P} \), the collection of probabilities \(P(S_1 = (1, 1)) \) is symmetric about 1/2, with 1/2 being the only accumulation point. This 1/2-case corresponds to the uniform distributions on \(S_n \)'s, and to the unique fully supported ergodic measure on the graph.