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The general combinatorial framework

Weighted Bratteli diagram is an infinite directed graph with a vertex set
T = ∪n≥0Tn such that

vertices are organized in finite levels Tn, with a sole root vertex ∅
comprising T0,

each edge connects a vertex on level n with a vertex on level n + 1,
for n = 0, 1, . . .,

each vertex has at least one follower and at least one predecessor
(except ∅)

each edge is endowed with a positive weight (or one considers
multiple edges if the weights are integer).
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The boundary problem

For a standard (directed) finite path (s0, s1, s2, . . . , sn) ∈ T0 × · · · × Tn,
the weight is the product of weights of edges sj → sj+1 along the path.

Let P be the set of probability laws for transient Markov chains
S = (Sn, n ≥ 0) on T with the properties:

Sn assumes values in Tn, in particular S0 = ∅,

Gibbs condition (Vershik-Kerov’s centrality) holds: conditionally given
Sn = sn for some sn ∈ Tn, each path
S0 = s0, . . . ,Sn−1 = sn−1,Sn = sn has probability proportional to its
weight.
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The set P is an infinite Choquet simplex, i.e. a compact convex set with
the property of uniqueness of barycentric representation of a generic
element as a mixture of extremes.

The boundary problem for T asks one to describe (as explicitly as
possible) the set of extreme elements extP of P.

Each P ∈ extP corresponds to an ergodic Markov chain (Sn), with trivial
tail σ-algebra.
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The Gibbs condition fixes transition probabilities for the time-reversed
Markov chain (. . . , S1,S0).

Each P ∈ P is uniquely determined by a nonnegative function φ on T
which is normalized by the condition φ(∅) = 0 and satisfies a backward
recursion

φ(s) =
∑

s′∈Tn+1: s→s′

weight(s → s ′)φ(s ′), s ∈ Tn, n ≥ 0.

The relation between P and φ is

P(S0 = s0, . . . ,Sn = sn) = (weight of s0, . . . , sn)× φ(sn).
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Some roots from 60’s-70’s

boundary theory for Polya’s urn models: Blackwell, Kendall

AF-algebras, dimension groups: Bratteli, Elliot, Effros et al

characters of the infinite symmetric group S∞: Vershik and Kerov

exchangeability: Diaconis and Freedman, Kingman
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Examples of ‘big’ boundaries

1 The Young lattice Y, with Yn being the set of partitions of integer n,
and simple edges (appending a box to the Young diagram). The
extreme boundary is parameterizable by

{(αj), (βj) : α1 ≥ α2 · · · ≥ 0, β1 ≥ β2 · · · ≥ 0,
∑

j

(αj + βj) ≤ 1}.

(Vershik and Kerov)

2 A composition poset: vertices on level n are compositions of integer n
(like (3, 5, 3, 2)). All edges are simple, except when a series of 1’s is
increased (e.g. (2, 1, 1, 2) → (2, 1, 1, 1, 2)). Each element of the
extreme boundary can be identified with some closed subset of [0, 1].

Further relatives of Y with rich boundaries were studied by Vershik, Kerov,
Okounkov, Olshanski, Kingman, G, Pitman, . . . .
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Generalized Pascal triangles

The generalized Pascal graph T has weights

`n,k for (n, k) → (n + 1, k) (transition ‘0’),

rn,k for (n, k) → (n + 1, k + 1) (transition ‘1’)

A path is encoded into 0-1 sequence.

Let D = (Dn,k , (n, k) ∈ T ) denote the dimension function (partition
function, statistical sum. . . ), So Dn,k = sum of weights of paths from
(0, 0) to (n, k), and satisfies the forward recursion

Dn,k = rn−1,k−1Dn−1,k−1 + `n−1,kDn−1,k , 0 ≤ k ≤ n. (1)

‘Named’ triangles (Pascal, Stirling, Euler, Lah, etc) derive their names
from the numbers Dn,k .
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P can be identified with the convex set of nonnegative solutions to the
backward recursion

φn,k = `n,kφn+1,k + rn,kφn+1,k+1, 0 ≤ k ≤ n; φ(0, 0) = 1. (2)

Note: each solution to (2) can be recovered from either of sequences
(φn,n, n ≥ 0) or (φn,0, n ≥ 0) by iterated (weighted) differencing, thus the
boundary problem reduces to finding all such sequences with nonnegative
differences of any order.

Alexander Gnedin (Utrecht University) Boundaries of the generalized Pascal triangles and larger graded graphs 9 / 22



For the related random walk S we have

Pφ(S0 = s0, . . . ,Sn = (n, k)) = (weight of path) × φn,k ,

so the marginal distributions of S are

Pφ(Sn = (n, k)) = Dn,kφn,k .

The backward transition probabilities do not depend on φ

Pφ(Sn−1 = (n − 1, j)|Sn = (n, k)) =
Dn−1,j

Dnk
(`n−1,jδjk + rn−1,jδj ,k−1).
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Martin kernel
The Martin kernel is the ratio

Dν,κ
n,k

Dν,κ
0 ≤ κ ≤ ν, 0 ≤ n ≤ ν, (3)

where the extended dimension Dν,κ
n,k = sum of weights of paths from (n, k)

to (ν, κ) (so Dn,k = Dn,k
0,0 ).

The Martin boundary ∂MP is the set of weak limits of elementary
measures corresponding to functions

φν,κ
n,k :=

Dν,κ
n,k

Dν,κ
(4)

where ν →∞ and κ = κ(ν).

The sequential boundary ∂↓P if defined by taking limits in (4) along
infinite paths.

We have extP ⊂ ∂↓P ⊂ ∂MP, but the inclusions may be strict (though in
pathological examples).
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The Pascal graph: de Finetti’s theorem

For the Pascal graph `n,k = rn,k = 1.
cn The ratios

φν,κ
n,k =

(
ν−n
κ−k

)(
ν
n

)
converge iff for κ = κ(ν) there exists

p := lim
ν→∞

κ
ν

the asymptotic frequency of 1’s. Since the graph describes branching of
orbits of S∞ = ∪nSn acting on {0, 1}∞, de Finetti’s theorem follows:
every extreme exchangeable 0-1 sequence is a Bernoulli(p) sequence.

Differencing (φn,n, n ≥ 0) shows that the sequence must be completely
monotone ⇒ de Finetti’s theorem is equivalent to ‘Hausdorff’s moments
problem’ on [0, 1].

Boundaries of Pascal pyramids (action of permutations on {1, . . . , d}∞)
and de Finetti’s theorem for R∞ derive from this basic result.
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q-exchangeability, the q-Pascal graph

Kerov ’85, G and Olshanski ’09

Two problems:

1 for q > 0, describe quasi-invariant under S∞ measures on {0, 1}∞,
with cocycle

q−c(σ,w), σ ∈ S∞, w = w1w2 · · · ∈ {0, 1}∞

c(w , σ) :=
limn #(inversions in w1 . . .wn)−#(inversions in (σw)1 . . . (σw)n),

2 for q a power of prime number, describe (all distributions for) random
subspaces of F∞q invariant under GL(∞, Fq),

are reduced to the boundary problem for the q-Pascal triangle, which has
the weights

`nk = 1, rnk = qn−k , (n, k) ∈ T .
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For the q-Pascal graph the Martin kernel is(
ν − n

κ − k

)
q

/

(
ν

n

)
q

,

where the q-binomial coefficients are defined via q-integers
[n]q := (1− qn)/(1− q). For q < 1 this converges only if κ(ν) = m for
large ν or κ →∞, so the boundary extP = ∂MP is discrete.
Explicitly, the limits are

φnk(m) =
q(m−k)(n−k)(1− q) · · · (1− qm)

(1− q) · · · (1− qm−k)
, k ≤ m

A q-analogue of Bernoulli coin-tossing is the q-shuffle: a word
1 . . . 1000 . . . (m 1’s) is re-arranged by iterated choices of a symbol in the
ξth position, where ξ has geomeric distribution.

Similar q-analogues of de Finetti’s theorem hold for sequences on larger
ordered alphabets (G and Olshanski ’09).
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Parameterization of the boundary

G and Pitman observed:

The sequential boundary ∂↓P is homeomorphic to a closed subset of [0, 1]
by the virtue of function

P 7→ P(S1 = (1, 1)) = φ1,1`0,1

(probability of the first ‘1’).

Proof: Sn under distribution φν,κ is strictly stochastically larger than Sn

under distribution φν,κ′
provided that κ′ > κ.

This is helpful to identify the topology of the boundary.

Alexander Gnedin (Utrecht University) Boundaries of the generalized Pascal triangles and larger graded graphs 15 / 22



The case of discrete boundary

Theorem

Suppose for m = 0, 1, . . . there are distributions Pm ∈ P such that
Pm(Sn = (n,m)) → 1 as n →∞, then each Pm is extreme (and satisfies
Sn = (n,m) for large n a.s.).

If above that Pm(S1 = (1, 1)) → 1 as m →∞ then Pm converge to the
trivial distribution P∞ with Sn = (n, n) P∞-a.s., and in this case

extP = ∂MP = {P0,P1, . . . ,P∞}.
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The case of continuous boundary

Theorem

Suppose there is a sequence of positive constants {c(n); n = 0, 1, . . .} with
c(n) →∞, and for each t ∈ [0,∞] there is a distribution Pt ∈ P which
satisfies

Sn ∼ c(n)t Pt − a.s..

Suppose the mapping t 7→ Pt is a continuous injection from [0,∞] to P,
with 0 and ∞ corresponding to the trivial Markov chains (Sn ≡ 0
respectively Sn ≡ n a.s.). Then a path {κ(ν); ν = 0, 1, . . .} induces a
limit if and only if κ(ν)/c(ν) → t for some t ∈ [0,∞], in which case the
limit is Pt . Moreover,

extP = ∂MP = {Pt , t ∈ [0,∞]}.
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Stirling triangles

A parametric class of triangles (G and Pitman ’05), a subclass of Stirling
triangles introduced by Kerov.

The generalized Stirling triangle has rnk = 1 and `nk = (n + 1)− α(k + 1)
for −∞ < α < 1.
For α = −∞ take `nk = k + 1.

The generalised Stirling numbers Dnk =

[
n + 1
k + 1

]
α

are the connection coefficients in

(z)n =
n∑

k=1

[
n
k

]
α

αn(z/α)n,

(where zn = z(z + 1) . . . (z + n − 1)). These are the Stirling numbers of
the second kind for α = −∞, and signless Stirling numbers of the first
kind α = 0.
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The interest to Stirling triangles is motivated by applications to

Kingman’s partition structures

Bayesian nonparametric inference, species sampling

urn models

excursions of Brownian motion and recurrent Bessel processes

random permutations and Ewens’ sampling formula of population
genetics
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A phase transition for Stirling triangles

For −∞ ≤ α < 0 the extreme boundary is discrete. For m = 1, 2, . . .

φn,0(m) =
1

(m|α|+ 1)n
for −∞ < α < 0,

and

φn,0(m) =
1

mn
for α = −∞.

For α = 0 the extreme boundary becomes continuous,

φn,0(t) =
1

(t + 1)n
t ∈ [0,∞].
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For 0 < α < 1 the boundary is also continuous, and

φn,0(t) =
tα

(1− α)nΓ(1− α)gα(t)

∫ 1

0
yn−α(1−y)−1−αgα(t(1−y)−α)dy

where gα is related to the stable density (with Laplace transform
e−λα

) via
fα(y) = αy−1−αgα(y−α).

Sn has the same law as the number of blocks in a partition of
{1, . . . , n} induced by a Bessel process conditioned on the value of
local time t, and Sn ∼ tnα a.s.
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The Eulerian triangle

`nk = k + 1, rnk = n − k + 1 the dimension is the Eulerian number
Dn,k = 〈n+1

k 〉 (which enumerates permutations with a given number of
descents).
The extreme elements of P are given by

φn,k(m) =
1

(n + 1)!

n−k∏
i=−k

(
1 +

i

m

)
with m ∈ Z ∪ {∞}.
(G and Olshanski ’06)

As P runs over P, the collection of probabilities P(S1 = (1, 1)) is
symmetric about 1/2, with 1/2 being the only accumulation point.
This 1/2-case corresponds to the uniform distributions on Sn’s, and to the
unique fully suported ergodic measure on the graph.
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