Heat transport to the boundary on discrete graphs

Matthias Keller, FSU Jena, joint work with Daniel Lenz

Workshop on "Boundaries" Graz, 01.07.2009

Plan

- 1. Introduction
- 2. Stochastic completeness for the bounded case
- 3. Stochastic incompleteness and the ℓ^{∞} spectrum
- 4. Subgraphs and stochastic incompleteness
- 5. Outlook and open questions

1. Introduction

Let G = (V, E) be a connected graph.

Let Δ on $\ell^2(V)$ be given by

$$(\Delta \varphi)(x) = \sum_{y \sim x} \varphi(x) - \varphi(y).$$

Let $\widetilde{\Delta}$ be the formal extension of Δ to all $\varphi:V\to R$ such that

$$\sum_{y \sim x} \varphi(x) - \varphi(y) < \infty.$$

The heat equation

The heat equation (HE)

$$-\widetilde{\Delta}u_t(x) = \partial_t u_t(x)$$
$$u_0(x) = f(x)$$

The heat equation

The heat equation (HE)

$$-\widetilde{\Delta}u_t(x) = \partial_t u_t(x)$$
$$u_0(x) = f(x)$$

is solved by

$$u_t(x) = e^{-t\Delta} f(x),$$

In particular it is the distribution of heat at time $t \ge 0$ for initial distribution f.

Question

Which amount of heat is in the graph at time t > 0, if it was distributed as $f \in \ell^1(V)$ at time t = 0?

Question

Which amount of heat is in the graph at time t > 0, if it was distributed as $f \in \ell^1(V)$ at time t = 0?

$$\sum_{x \in V} e^{-t\Delta} f(x) = \langle 1, e^{-t\Delta} f \rangle$$
$$= \langle e^{-t\Delta} 1, f \rangle$$
$$= \sum_{x \in V} f(x) \underbrace{e^{-t\Delta} 1(x)}_{0 < \dots < 1}.$$

Stochastic (in-)completeness

The operator Δ (the graph G) is called **stochastically complete**.

$$:\iff e^{-t\Delta}1 = 1 \text{ for all } t > 0.$$

 \iff (HE) has a unique solution in ℓ^{∞} .

Stochastic (in-)completeness

The operator Δ (the graph G) is called **stochastically complete**.

$$:\iff e^{-t\Delta}1 = 1 \text{ for all } t > 0.$$

 \iff (HE) has a unique solution in ℓ^{∞} .

The operator Δ (the graph G) is called **stochastically incomplete**.

$$:\iff e^{-t\Delta}1(x) < 1 \text{ for some } t > 0 \text{ and } x \in V.$$

 $\iff e^{-t\Delta} 1 < 1$ for all t > 0.

2. Stochastic completeness for the bounded case

Let deg(x) be the degree of a vertex $x \in V$.

Theorem. (Dodziuk, Mathai '06) If $\sup_{x \in V} \deg(x) < \infty$. Then

$$(\Delta \varphi)(x) = \sum_{y \sim x} \varphi(x) - \varphi(y), \text{ on } \ell^2(V)$$

is stochastically complete, i.e. $e^{-t\Delta}1 = 1$ for all t > 0.

More on bounded operators

Fact: Δ bounded $\Leftrightarrow \sup_x \deg(x) < \infty$.

The result holds indeed for all bounded, positive, symmetric difference operators.

More on bounded operators

Fact: Δ bounded $\Leftrightarrow \sup_x \deg(x) < \infty$.

The result holds indeed for all bounded, positive, symmetric difference operators.

In particular

$$I - P : \ell^2(V, \deg) \to \ell^2(V, \deg)$$
$$((I - P)\varphi)(x) = \frac{1}{\deg(x)} \sum_{y \sim x} \varphi(x) - \varphi(y)$$

is stochastically complete on every graph since it is always bounded.

What happens if $\sup_x \deg(x) = \infty$?

3. Stochastic incompleteness and the ℓ^∞ spectrum

- What is the operator?
 - Wojciechowski '07
 - Weber '08
 - Jorgensen '08 (weighted graphs)

3. Stochastic incompleteness and the ℓ^∞ spectrum

- What is the operator?
 - Wojciechowski '07
 - Weber '08
 - Jorgensen '08 (weighted graphs)
- Stochastic completeness
 - Sturm '94 (strongly local Dirichlet forms)
 - Grigor'yan '99 (Riemannian manifolds)
 - Wojciechowski '07 (Δ on graphs)
 - Weber '08

Dirichlet forms

Let V be countable and $m:V\to (0,\infty)$ a measure.

Dirichlet forms

Let V be countable and $m: V \to (0, \infty)$ a measure. All **regular Dirichlet forms** $Q: \ell^2(V, m) \to [0, \infty]$ are given by

$$Q(\varphi) = \frac{1}{2} \sum_{x,y \in V} b(x,y)(\varphi(x) - \varphi(y))^2 + \sum_{x \in V} c(x)\varphi(x)^2$$

with $c:V \to [0,\infty)$

Dirichlet forms

Let V be countable and $m: V \to (0, \infty)$ a measure. All **regular Dirichlet forms** $Q: \ell^2(V, m) \to [0, \infty]$ are given by

$$Q(\varphi) = \frac{1}{2} \sum_{x,y \in V} b(x,y) (\varphi(x) - \varphi(y))^2 + \sum_{x \in V} c(x) \varphi(x)^2$$

with $c:V\to [0,\infty)~~\text{and}~b:V\times V\to [0,\infty)$:

•
$$b(x, y) = b(y, x)$$

• $\sum_{y} b(x, y) < \infty$ all $x \in V$.

What is the operator?

By polarization and general theory

$$Q(\varphi,\psi) = \langle L^{\frac{1}{2}}\varphi, L^{\frac{1}{2}}\psi \rangle,$$

where L on $D(L) \subseteq \ell^2(V,m)$ is given by

$$(L\varphi)(x) = \frac{1}{m(x)} \sum_{y \in V} b(x, y)(\varphi(x) - \varphi(y)) + \frac{c(x)}{m(x)}\varphi(x).$$

Let \widetilde{L} be the formal extension of L to all φ such that RHS< ∞ .

What about stochastic completeness?

If $c \neq 0$ then $e^{-tL} 1 < 1$.

What about stochastic completeness?

If $c \neq 0$ then $e^{-tL} 1 < 1$.

Adjusted question: Is heat transferred to the boundary?

What about stochastic completeness?

If
$$c \neq 0$$
 then $e^{-tL} 1 < 1$.

Adjusted question: Is heat transferred to the boundary?

For $t \ge 0$ let $M_t: V \to [0,\infty)$

$$M_t = \underbrace{e^{-tL}}_{\text{heat in the graph}} + \underbrace{\int_0^t e^{-sL} c \, ds}_{\text{heat killed by } c}.$$

Question: Is $M_t < 1$?

Theorem. (K., Lenz'09) TFAE

(i.) $M_t < 1$.

Theorem. (K., Lenz'09) TFAE

(i.) $M_t < 1$.

(ii.) For all $\alpha > 0$ there is a nontrivial $\varphi \in \ell^{\infty}(V)$

$$(\widetilde{L} + \alpha)\varphi = 0.$$

Theorem. (K., Lenz'09) TFAE

(i.)
$$M_t < 1$$
.

(ii.) For all $\alpha > 0$ there is a nontrivial $\varphi \in \ell^{\infty}(V)$

$$(\widetilde{L} + \alpha)\varphi = 0.$$

(iii.) (HE) has no unique solution.

Theorem. (K., Lenz'09) TFAE

(i.) $M_t < 1$.

(ii.) For all $\alpha > 0$ there is a nontrivial $\varphi \in \ell^{\infty}(V)$

 $(\widetilde{L} + \alpha)\varphi = 0.$

(iii.) (HE) has no unique solution.

- Sturm '94 (strongly local Dirichlet forms)
- Grigor'yan '99 (Riemannian manifolds)
- Wojciechowski '07 (Δ on graphs)

Examples

Theorem. (Wojciechowski '07) If for every non-repeating path (x_n)

$$\sum_{n\in\mathbb{N}}\frac{1}{\deg_+(x_n)}<\infty.$$

Then

$$e^{-t\Delta} 1 < 1.$$

4. Subgraphs and stochastic incompleteness

Question: Does existence of a stochastically incomplete subgraph imply stochastic incompleteness of the graph?

4. Subgraphs and stochastic incompleteness

Question: Does existence of a stochastically incomplete subgraph imply stochastic incompleteness of the graph?

No!

Theorem. (K., Lenz'09) Every graph is a subgraph of a stochastically complete graph.

Which additional assumptions are sufficient?

Theorem. (K., Lenz'09) If the operator with Dirichlet boundary conditions on a subgraph is stochastically incomplete, then the operator on the graph is stochastically incomplete.

5. Outlook and open questions?

(1) Given an operator L. Is there a metric d_L such that for the distance balls $B_r(x)$ the following holds: If

$$\sum \frac{r}{\log|B_r(x)|} = \infty,$$

then L is stochastically complete?

5. Outlook and open questions?

(2) Given an operator L.

Can one find

- ullet a boundary ∂V of a graph,
- a metric d'_L which extends to ∂V ,

• a measure m on the boundary ∂V . such that if for some $x \in V$

$$m(\{y \in \partial V \mid d'_L(x,y) < \infty\})$$

is 'large', then L is stochastically incomplete.