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ends of graphs

graph X = (VX, EX) ray R -

Ri ~ Ry <= JR3 such that |R3 N R1| = |R3 N R2| = Q.
R,

R,
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graph X = (VX, EX) ray R -

Ri ~ Ry <= JR3 such that |R3 N R1| = |R3 N R2| = 00.
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Equivalence classes are the ends of X.

Bernhard Kron (Univ. of Vienna) Vertex cuts 30.06.2009 3/19



ends of graphs

graph X = (VX, EX) ray R -

Ri ~ Ry <= JR3 such that |R3 N R1| = |R3 N R2| = 00.
R

R,

R,

Equivalence classes are the ends of X.
The set of ends 2.X is totally disconnected.
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Stallings’ structure theorem

The number of ends of X = Cay(G, S) does not depend on S if |S| < 0.
= We can speak about the number of ends of G.
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Stallings’ structure theorem
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= We can speak about the number of ends of G.

G splits over H < G if

G = Gy *q Gy (free product with amalgamation) or
G = Gix© (HNN-extension) for some o« : H — H'.

Bernhard Kron (Univ. of Vienna)

Vertex cuts 30.06.2009 4 /19



Stallings’ structure theorem

The number of ends of X = Cay(G, S) does not depend on S if |S| < 0.
= We can speak about the number of ends of G.

G splits over H < G if

G = Gy *q Gy (free product with amalgamation) or
G = Gix© (HNN-extension) for some o« : H — H'.

Theorem (Stallings’ structure theorem, 1969)

G finitely generated. Then

G has more than one end < G splits over finite subgroup
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free amalgamated products

Doo #(7,/27) Doo = (a,b,c | 8,02, ¢%) = (Z /2 L) % (Z [2 L) % (Z |2 T.)
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free amalgamated products

30.06.2009 6 /19



free amalgamated products

I
AN

2(H)=H,

Gl*“ Gl

Given a group presentation (i.e. a Cayley graph) one can usually not see
the splitting immediately.
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free amalgamated products

I
AN

2(H)=H,

Gl*“ Gt

Given a group presentation (i.e. a Cayley graph) one can usually not see

the splitting immediately.

Only in the case of a standard presentation (as in the picture above) it is

clear what the splitting is.
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an (almost) trivial example

G=Q+Q or G=R=x*R, 5,5 =[-1,+1].

How many ends does G have?
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an (almost) trivial example

G=Q+Q or G=R=x*R, 5,5 =[-1,+1].

How many ends does G have?

answer: not clear, depends on the definition.
How many ends should G have?

How many ends does X = Cay(Q * Q, S; U S3) have?
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an (almost) trivial example

G=Q+Q or G=R=x*R, 5,5 =[-1,+1].

How many ends does G have?

answer: not clear, depends on the definition.
How many ends should G have?

How many ends does X = Cay(Q * Q, S; U S3) have?
answer: infinitely many vertex ends (definition above), one edge end.
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X connected graph (not necessarily locally finite), E C VX.
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cuts

X connected graph (not necessarily locally finite), E C VX.

boundary: NE ={x € VX \ E | x ~ E}
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cuts

X connected graph (not necessarily locally finite), E C VX.

boundary: NE ={x € VX \ E | x ~ E}
s-complement: E* = VX \ (E U NE)
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cuts

X connected graph (not necessarily locally finite), E C VX.

boundary: NE ={x € VX \ E | x ~ E}
s-complement: E* = VX \ (E U NE)

Consider cuts as “large, connected sets with small boundary”,
whatever “large” and “small”’ may mean.
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axioms cuts

A cut system C is a set of connected sets of vertices with finite boundaries

which satisfies:
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axioms cuts

A cut system C is a set of connected sets of vertices with finite boundaries

which satisfies:

(A1) If Cisin C then C* contains an element of C.

(A2) If Cisin C then every component of C* which contains an element of
CisinC.
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axioms cuts

A cut system C is a set of connected sets of vertices with finite boundaries

which satisfies:

(A1) If Cisin C then C* contains an element of C.

(A2) If Cisin C then every component of C* which contains an element of
CisinC.

(A3) If C and D are in C then either a component of CN D and a
component of C* N D* are in C or a component of C N D* and a

component of C*N D are in C.

30.06.2009 9 /19

Bernhard Kron (Univ. of Vienna) Vertex cuts



axioms cuts

A cut system C is a set of connected sets of vertices with finite boundaries

which satisfies:

(A1) If Cisin C then C* contains an element of C.

(A2) If Cisin C then every component of C* which contains an element of
CisinC.

(A3) If C and D are in C then either a component of CN D and a
component of C* N D* are in C or a component of C N D* and a

component of C*N D are in C.

30.06.2009 9 /19

Bernhard Kron (Univ. of Vienna) Vertex cuts



axioms cuts

A cut system C is a set of connected sets of vertices with finite boundaries

which satisfies:

(A1) If Cisin C then C* contains an element of C.

(A2) If Cisin C then every component of C* which contains an element of
CisinC.

(A3) If C and D are in C then either a component of CN D and a
component of C* N D* are in C or a component of C N D* and a

component of C*N D are in C.

Set E=CUC*={C,C*|CeC).
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axioms cuts

E
Fﬁ

o

NEAF | EXF

E,,NF

NE.NF| E*ANF )

NEF*

N

-

(A3) If C and D are in C then either a component of C N D and a

component of C* N D* are

in C or a component of C N D* and a

component of C*N D are in C.
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axioms cuts
*
E i 3
F ﬂ NEAFA
E,,NF NE.NF E*nlvﬂ
F* K Ve | E-F°

(A3) If C and D are in C then either a component of C N D and a
component of C* N D* are in C or a component of C N D* and a

component of C*N D are in C.
(A3)" If C and D are in C then C\ ND has a component which is an

element of C.
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diagram nestedness

F E.F | NE.F | ELE

E,,NF NE.NF E"nwﬂ
* »*
F \ NvEF*| E~F

isolated corner: contains no cut (is small), and adjacent links are empty.
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diagram nestedness

F E.F | NE.F | ELE

E,,NF NE.NF E"nwﬂ
* »*
F \ NvEF*| E~F

isolated corner: contains no cut (is small), and adjacent links are empty.

E and F are nested <= there is an isolated corner.
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examples of cut systems

C = connected sets C such that C and C* contain an end (a ray).
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examples of cut systems

C = connected sets C such that C and C* contain an end (a ray).

A subset Y of VX is said to be k-inseparable if it has at least k + 1
elements and if for every set B C VX with [NB| < k, either Y C BU NB
or Y C B*UNB.

Let k be the smallest positive integer for which there are sets A,

Y1 and Y, such that |[NA| =k, Y1 and Y3 are k-inseparable,

Y1 CAUNA and Ys C A* U NA.
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examples of cut systems

C = connected sets C such that C and C* contain an end (a ray).

A subset Y of VX is said to be k-inseparable if it has at least k + 1

elements and if for every set B C VX with [NB| < k, either Y C BU NB
or Y C BFUNB.

Let k be the smallest positive integer for which there are sets A,
Y1 and Y, such that |[NA| =k, Y1 and Y3 are k-inseparable,
Y1 CAUNA and Yo C A" U NA.

C = sets A with the above property and |NA| = k. \
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minimal cut systems

minimal cut C in C: [NC| is minimal.

minimal cut system: all cuts are minimal.
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minimal cut systems

minimal cut C in C: [NC| is minimal.

minimal cut system: all cuts are minimal.

Every cut system contains a minimal sub-system.
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uts — tree
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X and the tree construction

When we replace the boundaries NC of cuts by complete graphs and
“cut off” the isolated corners we obtain a connected graph X.

X — )A< C — CA the structure essentially remains the same.
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X and the tree construction
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Set S={NC | C e}
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X and the tree construction

When we replace the boundaries NC of cuts by complete graphs and
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X — )A< C — CA the structure essentially remains the same.

Set S={NC | C e}
For E,F € C put E ~ F if either

(i) E=For
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X and the tree construction

When we replace the boundaries NC of cuts by complete graphs and
“cut off” the isolated corners we obtain a connected graph X.

X — )A< C — CA the structure essentially remains the same.

Set S={NC | C e}
For E,F € C put E ~ F if either

(i) E=F or

(i) NE # NF and E* C F
andif EXC DCF,forDcC, then D= F
and if E* C D* C F, for D € C, then E = D.

Bernhard Kron (Univ. of Vienna) Vertex cuts

30.06.2009 15 /



X and the tree construction

When we replace the boundaries NC of cuts by complete graphs and
“cut off” the isolated corners we obtain a connected graph X.

X — )A< C — CA the structure essentially remains the same.

Set S={NC | C e}
For E,F € C put E ~ F if either

(i) E=F or
(il) NE # NF and E* C F

andif EXC DCF,forDcC, then D= F
and if E* C D* C F, for D € C, then E = D.

tree T:
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X and the tree construction

When we replace the boundaries NC of cuts by complete graphs and
“cut off” the isolated corners we obtain a connected graph X.

X — )A< C — CA the structure essentially remains the same.

Set S={NC | C e}
For E,F € C put E ~ F if either

(i) E=F or
(il) NE # NF and E* C F

andif EXC DCF,forDcC, then D= F
and if E* C D* C F, for D € C, then E = D.

tree T: ET =,
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X and the tree construction

When we replace the boundaries NC of cuts by complete graphs and
“cut off” the isolated corners we obtain a connected graph X.

X — )A< C — CA the structure essentially remains the same.

Set S={NC | C e}
For E,F € C put E ~ F if either

(i) E=F or
(il) NE # NF and E* C F

andif EXC DCF,forDcC, then D= F
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X and the tree construction

When we replace the boundaries NC of cuts by complete graphs and
“cut off” the isolated corners we obtain a connected graph X.

X — )A< C — CA the structure essentially remains the same.

Set S={NC | C e}
For E,F € C put E ~ F if either

(i) E=F or

(i) NE # NF and E* C F
andif E*xC D C F, for D€ C, then D = F,
and if E* C D* C F, for D € C, then E = D.

tree T: ET=C, VT =8SU(l/~.
t(E) = NE of E € € and o(E) is the ~-class which contains E.
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uts — tree
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G-cut-systems and G-trees
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G-cut-systems and G-trees

Main Theorem (Dunwoody, Kron)

Every G-cut-system in a connected G-graph contains a minimal nested

G-subsystem.
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G-cut-systems and G-trees

Main Theorem (Dunwoody, Kron)

Every G-cut-system in a connected G-graph contains a minimal nested
G-subsystem.

Consequence: G acts on the tree T.
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G-cut-systems and G-trees

Main Theorem (Dunwoody, Kron)

Every G-cut-system in a connected G-graph contains a minimal nested

G-subsystem.

Consequence: G acts on the tree T.

This generalizes edge cuts to vertex cuts, see
Dunwoody “Cutting up graphs” (1982),
Dicks and Dunwoody “Groups acting on graphs” (1989).
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Application 1: New proof of Stallings’ theorem
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Application 1: New proof of Stallings’ theorem

When applying the arguments in the new proof to the classical context we

obtain a relatively simple proof of Stallings' theorem on ends of groups.
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Application 2: Stallings' theorem for arbitrary groups

Theorem (Stallings’ structure theorem, 1969)
Let G be a finitely generated group. Then

G has a Cayley graph with more than one end <=
G splits over a finite subgroup
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Application 2: Stallings' theorem for arbitrary groups

Theorem (Stallings’ structure theorem, 1969)
Let G be a finitely generated group. Then

G has a Cayley graph with more than one end <=
G splits over a finite subgroup

Theorem (D., K. 2009)

Let G be any group. Then
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