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ends of graphs

graph X = (VX ,EX ) ray R -q q q q q
R1 ∼ R2 ⇐⇒ ∃R3 such that |R3 ∩ R1| = |R3 ∩ R2| =∞.

Equivalence classes are the ends of X .

The set of ends ΩX is totally disconnected.
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Stallings’ structure theorem

The number of ends of X = Cay(G ,S) does not depend on S if |S | <∞.

⇒ We can speak about the number of ends of G .

G splits over H < G if

G = G1 ∗α G2 (free product with amalgamation) or

G = G1∗α (HNN-extension) for some α : H → H ′.

Theorem (Stallings’ structure theorem, 1969)

G finitely generated. Then

G has more than one end ⇐⇒ G splits over finite subgroup
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free amalgamated products

D∞ ∗(Z /2 Z) D∞ =
〈
a, b, c | a2, b2, c2

〉
= (Z /2 Z) ∗ (Z /2 Z) ∗ (Z /2 Z)
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free amalgamated products

Given a group presentation (i.e. a Cayley graph) one can usually not see

the splitting immediately.

Only in the case of a standard presentation (as in the picture above) it is

clear what the splitting is.
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an (almost) trivial example

G = Q ∗Q or G = R ∗ R, S1,S2 = [−1,+1].

How many ends does G have?

answer: not clear, depends on the definition.

How many ends should G have?

How many ends does X = Cay(Q ∗Q,S1 ∪ S2) have?

answer: infinitely many vertex ends (definition above), one edge end.
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cuts

X connected graph (not necessarily locally finite), E ⊂ VX .

boundary: NE = {x ∈ VX \ E | x ∼ E}
∗-complement: E ∗ = VX \ (E ∪ NE )

Consider cuts as “large, connected sets with small boundary”,

whatever “large” and “small” may mean.
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axioms cuts

A cut system C is a set of connected sets of vertices with finite boundaries

which satisfies:

(A1) If C is in C then C ∗ contains an element of C.

(A2) If C is in C then every component of C ∗ which contains an element of

C is in C.

(A3) If C and D are in C then either a component of C ∩ D and a

component of C ∗ ∩ D∗ are in C or a component of C ∩ D∗ and a

component of C ∗ ∩ D are in C.

Set E = C ∪ C∗ = {C ,C ∗ | C ∈ C}.
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axioms cuts

(A3) If C and D are in C then either a component of C ∩ D and a

component of C ∗ ∩ D∗ are in C or a component of C ∩ D∗ and a

component of C ∗ ∩ D are in C.

(A3)’ If C and D are in C then C \ ND has a component which is an

element of C.
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diagram nestedness

isolated corner: contains no cut (is small), and adjacent links are empty.

E and F are nested ⇐⇒ there is an isolated corner.
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examples of cut systems

Example

C = connected sets C such that C and C ∗ contain an end (a ray).

A subset Y of VX is said to be k-inseparable if it has at least k + 1

elements and if for every set B ⊂ VX with |NB| ≤ k , either Y ⊂ B ∪ NB

or Y ⊂ B∗ ∪ NB.

Let κ be the smallest positive integer for which there are sets A,

Y1 and Y2 such that |NA| = κ, Y1 and Y2 are κ-inseparable,

Y1 ⊂ A ∪ NA and Y2 ⊂ A∗ ∪ NA.

Example

C = sets A with the above property and |NA| = κ.
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minimal cut systems

minimal cut C in C: |NC | is minimal.

minimal cut system: all cuts are minimal.

Theorem

Every cut system contains a minimal sub-system.

Bernhard Krön (Univ. of Vienna) Vertex cuts 30.06.2009 13 / 19



minimal cut systems

minimal cut C in C: |NC | is minimal.

minimal cut system: all cuts are minimal.

Theorem

Every cut system contains a minimal sub-system.

Bernhard Krön (Univ. of Vienna) Vertex cuts 30.06.2009 13 / 19



cuts → tree
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X̂ and the tree construction

When we replace the boundaries NC of cuts by complete graphs and

“cut off” the isolated corners we obtain a connected graph X̂ .

X → X̂ , C → Ĉ, the structure essentially remains the same.

Set S = {NC | C ∈ Ĉ}.
For E ,F ∈ Ĉ put E ∼ F if either

(i) E = F or

(ii) NE 6= NF and E ∗ ⊂ F

and if E ∗ ⊂ D ⊂ F , for D ∈ Ĉ, then D = F ,

and if E ∗ ⊂ D∗ ⊂ F , for D ∈ Ĉ, then E = D.

tree T : ET = Ĉ, VT = S ∪ Ĉ/∼.

t(E ) = NE of E ∈ Ĉ and o(E ) is the ∼-class which contains E .
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and if E ∗ ⊂ D∗ ⊂ F , for D ∈ Ĉ, then E = D.
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cuts → tree
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G -cut-systems and G -trees

Main Theorem (Dunwoody, Krön)

Every G -cut-system in a connected G -graph contains a minimal nested

G -subsystem.

Consequence: G acts on the tree T .

This generalizes edge cuts to vertex cuts, see

Dunwoody “Cutting up graphs” (1982),

Dicks and Dunwoody “Groups acting on graphs” (1989).
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Application 1: New proof of Stallings’ theorem

When applying the arguments in the new proof to the classical context we

obtain a relatively simple proof of Stallings’ theorem on ends of groups.
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Application 2: Stallings’ theorem for arbitrary groups

Theorem (Stallings’ structure theorem, 1969)

Let G be a finitely generated group. Then

G has a Cayley graph with more than one end ⇐⇒
G splits over a finite subgroup

Theorem (D., K. 2009)

Let G be any group. Then

G has a Cayley graph with more than one end ⇐⇒
G splits over a finite subgroup.
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