Vertex cuts, ends and group splittings

Boundaries, Graz 2009

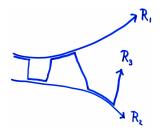
Bernhard Krön

University of Vienna

joint with Martin J. Dunwoody (Univ. of Southampton)

- Ends and group splittings
- 2 Axiomatic cut systems
- 3 Results (existence of *G*-cut-systems)
- Applications (Generalization of Stallings' Theorem)

graph X = (VX, EX) ray $R \longrightarrow R_1 \sim R_2 \iff \exists R_3$ such that $|R_3 \cap R_1| = |R_3 \cap R_2| = \infty$.



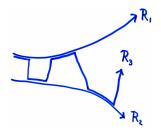
graph X = (VX, EX) ray $R \longrightarrow R_1 \sim R_2 \iff \exists R_3$ such that $|R_3 \cap R_1| = |R_3 \cap R_2| = \infty$.

R₃ R₂

Equivalence classes are the ends of X.

graph X = (VX, EX) ray $R \leftrightarrow \cdots \leftrightarrow \to$

 $R_1 \sim R_2 \iff \exists R_3 \quad \text{such that} \quad |R_3 \cap R_1| = |R_3 \cap R_2| = \infty.$



Equivalence classes are the ends of X.

The set of ends ΩX is totally disconnected.

The number of ends of X = Cay(G, S) does not depend on S if $|S| < \infty$.

 \Rightarrow We can speak about the number of ends of G.

The number of ends of X = Cay(G, S) does not depend on S if $|S| < \infty$.

 \Rightarrow We can speak about the number of ends of G.

 $\begin{array}{ll} G \mbox{ splits over } H < G \mbox{ if} \\ G = G_1 *_{\alpha} G_2 & (\mbox{free product with amalgamation}) & \mbox{or} \\ G = G_1 *^{\alpha} & (\mbox{HNN-extension}) & \mbox{for some } \alpha : H \to H'. \end{array}$

The number of ends of X = Cay(G, S) does not depend on S if $|S| < \infty$.

 \Rightarrow We can speak about the number of ends of G.

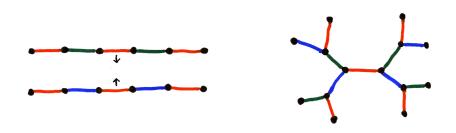
 $\begin{array}{l} G \mbox{ splits over } H < G \mbox{ if} \\ G = G_1 *_{\alpha} G_2 \quad (\mbox{free product with amalgamation}) \mbox{ or} \\ G = G_1 *^{\alpha} \qquad (\mbox{HNN-extension}) \mbox{ for some } \alpha : H \to H'. \end{array}$

Theorem (Stallings' structure theorem, 1969)

G finitely generated. Then

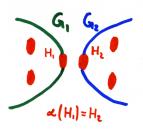
G has more than one end \iff G splits over finite subgroup

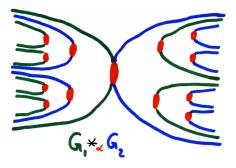
(七日) (日)

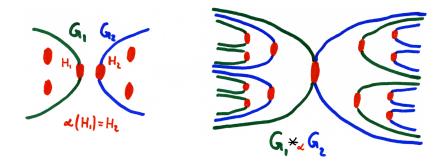


$D_{\infty} \ast_{(\mathbb{Z}/2\mathbb{Z})} D_{\infty} = \left\langle a, b, c \mid a^2, b^2, c^2 \right\rangle = (\mathbb{Z}/2\mathbb{Z}) \ast (\mathbb{Z}/2\mathbb{Z}) \ast (\mathbb{Z}/2\mathbb{Z})$

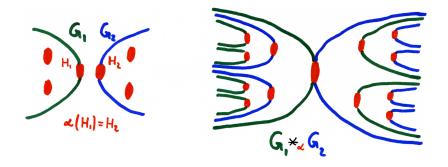
3 1 4







Given a group presentation (i.e. a Cayley graph) one can usually not see the splitting immediately.



Given a group presentation (i.e. a Cayley graph) one can usually not see the splitting immediately.

Only in the case of a standard presentation (as in the picture above) it is clear what the splitting is.

$$G = \mathbb{Q} * \mathbb{Q}$$
 or $G = \mathbb{R} * \mathbb{R}$, $S_1, S_2 = [-1, +1]$.

How many ends does G have?

$$G = \mathbb{Q} * \mathbb{Q}$$
 or $G = \mathbb{R} * \mathbb{R}$, $S_1, S_2 = [-1, +1]$.

How many ends does *G* have?

answer: not clear, depends on the definition.

$$G = \mathbb{Q} * \mathbb{Q}$$
 or $G = \mathbb{R} * \mathbb{R}$, $S_1, S_2 = [-1, +1]$.

How many ends does G have?

answer: not clear, depends on the definition.

How many ends should *G* have?

$$G = \mathbb{Q} * \mathbb{Q}$$
 or $G = \mathbb{R} * \mathbb{R}$, $S_1, S_2 = [-1, +1]$.

How many ends does G have? answer: not clear, depends on the definition.

How many ends should *G* have?

How many ends does $X = Cay(\mathbb{Q} * \mathbb{Q}, S_1 \cup S_2)$ have?

$$G = \mathbb{Q} * \mathbb{Q}$$
 or $G = \mathbb{R} * \mathbb{R}$, $S_1, S_2 = [-1, +1]$.

How many ends does G have? answer: not clear, depends on the definition.

How many ends should *G* have?

How many ends does $X = Cay(\mathbb{Q} * \mathbb{Q}, S_1 \cup S_2)$ have? answer: infinitely many vertex ends (definition above), one edge end.

→ Ξ → 4

boundary: $NE = \{x \in VX \setminus E \mid x \sim E\}$

<ロト </p>

boundary: $NE = \{x \in VX \setminus E \mid x \sim E\}$ *-complement: $E^* = VX \setminus (E \cup NE)$

< ロ > < 同 > < 三 > < 三

```
boundary: NE = \{x \in VX \setminus E \mid x \sim E\}
*-complement: E^* = VX \setminus (E \cup NE)
```

Consider cuts as "large, connected sets with small boundary", whatever "large" and "small" may mean.

A cut system C is a set of connected sets of vertices with finite boundaries which satisfies:

.⊒ . ►

A cut system C is a set of connected sets of vertices with finite boundaries which satisfies:

(A1) If C is in C then C^* contains an element of C.

A cut system \mathcal{C} is a set of connected sets of vertices with finite boundaries which satisfies:

- (A1) If C is in C then C^* contains an element of C.
- (A2) If C is in C then every component of C* which contains an element of C is in C.

A cut system C is a set of connected sets of vertices with finite boundaries which satisfies:

- (A1) If C is in C then C^* contains an element of C.
- (A2) If C is in C then every component of C^* which contains an element of C is in C.
- (A3) If C and D are in C then either a component of C ∩ D and a component of C* ∩ D* are in C or a component of C ∩ D* and a component of C* ∩ D are in C.

A cut system C is a set of connected sets of vertices with finite boundaries which satisfies:

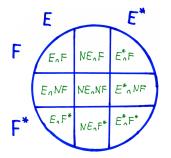
- (A1) If C is in C then C^* contains an element of C.
- (A2) If C is in C then every component of C^* which contains an element of C is in C.
- (A3) If C and D are in C then either a component of C ∩ D and a component of C* ∩ D* are in C or a component of C ∩ D* and a component of C* ∩ D are in C.

A cut system \mathcal{C} is a set of connected sets of vertices with finite boundaries which satisfies:

- (A1) If C is in C then C^* contains an element of C.
- (A2) If C is in C then every component of C^* which contains an element of C is in C.
- (A3) If C and D are in C then either a component of C ∩ D and a component of C* ∩ D* are in C or a component of C ∩ D* and a component of C* ∩ D are in C.

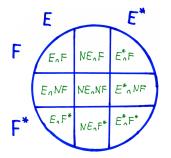
Set
$$\mathcal{E} = \mathcal{C} \cup \mathcal{C}^* = \{\mathcal{C}, \mathcal{C}^* \mid \mathcal{C} \in \mathcal{C}\}.$$

axioms cuts



(A3) If C and D are in C then either a component of C ∩ D and a component of C* ∩ D* are in C or a component of C ∩ D* and a component of C* ∩ D are in C.

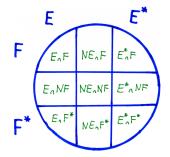
axioms cuts



(A3) If C and D are in C then either a component of C ∩ D and a component of C* ∩ D* are in C or a component of C ∩ D* and a component of C* ∩ D are in C.

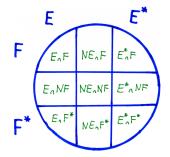
(A3)' If C and D are in C then $C \setminus ND$ has a component which is an element of C.

diagram nestedness



isolated corner: contains no cut (is small), and adjacent links are empty.

diagram nestedness



isolated corner: contains no cut (is small), and adjacent links are empty. *E* and *F* are nested \iff there is an isolated corner.

examples of cut systems

Example

C = connected sets C such that C and C^{*} contain an end (a ray).

examples of cut systems

Example

C = connected sets C such that C and C^{*} contain an end (a ray).

A subset Y of VX is said to be k-inseparable if it has at least k + 1elements and if for every set $B \subset VX$ with $|NB| \le k$, either $Y \subset B \cup NB$ or $Y \subset B^* \cup NB$.

Let κ be the smallest positive integer for which there are sets A, Y_1 and Y_2 such that $|NA| = \kappa$, Y_1 and Y_2 are κ -inseparable, $Y_1 \subset A \cup NA$ and $Y_2 \subset A^* \cup NA$.

examples of cut systems

Example

C = connected sets C such that C and C^{*} contain an end (a ray).

A subset Y of VX is said to be k-inseparable if it has at least k + 1elements and if for every set $B \subset VX$ with $|NB| \leq k$, either $Y \subset B \cup NB$ or $Y \subset B^* \cup NB$.

Let κ be the smallest positive integer for which there are sets A, Y_1 and Y_2 such that $|NA| = \kappa$, Y_1 and Y_2 are κ -inseparable, $Y_1 \subset A \cup NA$ and $Y_2 \subset A^* \cup NA$.

Example

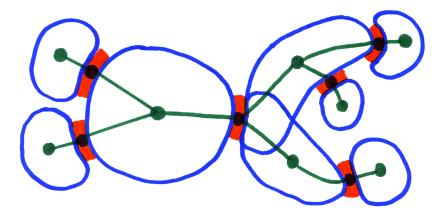
 $C = \text{sets } A \text{ with the above property and } |NA| = \kappa.$

minimal cut C in C: |NC| is minimal. minimal cut system: all cuts are minimal.

minimal cut C in C: |NC| is minimal. minimal cut system: all cuts are minimal.

Theorem

Every cut system contains a minimal sub-system.



三 のへぐ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

When we replace the boundaries *NC* of cuts by complete graphs and "cut off" the isolated corners we obtain a connected graph \hat{X} . $X \to \hat{X}, \quad C \to \hat{C}$, the structure essentially remains the same.

When we replace the boundaries *NC* of cuts by complete graphs and "cut off" the isolated corners we obtain a connected graph \hat{X} . $X \rightarrow \hat{X}, \quad C \rightarrow \hat{C}$, the structure essentially remains the same.

Set $\mathcal{S} = \{ \mathsf{NC} \mid \mathsf{C} \in \hat{\mathcal{C}} \}.$

When we replace the boundaries *NC* of cuts by complete graphs and "cut off" the isolated corners we obtain a connected graph \hat{X} . $X \rightarrow \hat{X}, \quad C \rightarrow \hat{C}$, the structure essentially remains the same.

Set $S = \{NC \mid C \in \hat{C}\}$. For $E, F \in \hat{C}$ put $E \sim F$ if either

(i) E = F or

When we replace the boundaries *NC* of cuts by complete graphs and "cut off" the isolated corners we obtain a connected graph \hat{X} . $X \rightarrow \hat{X}, \quad C \rightarrow \hat{C}$, the structure essentially remains the same.

Set $S = \{NC \mid C \in \hat{C}\}$. For $E, F \in \hat{C}$ put $E \sim F$ if either

(i)
$$E = F$$
 or

(ii)
$$NE \neq NF$$
 and $E^* \subset F$
and if $E^* \subset D \subset F$, for $D \in \hat{C}$, then $D = F$,
and if $E^* \subset D^* \subset F$, for $D \in \hat{C}$, then $E = D$.

When we replace the boundaries *NC* of cuts by complete graphs and "cut off" the isolated corners we obtain a connected graph \hat{X} . $X \rightarrow \hat{X}, \quad C \rightarrow \hat{C}$, the structure essentially remains the same.

Set $S = \{NC \mid C \in \hat{C}\}$. For $E, F \in \hat{C}$ put $E \sim F$ if either

(i)
$$E = F$$
 or

(ii)
$$NE \neq NF$$
 and $E^* \subset F$
and if $E^* \subset D \subset F$, for $D \in \hat{C}$, then $D = F$,
and if $E^* \subset D^* \subset F$, for $D \in \hat{C}$, then $E = D$.

tree T:

When we replace the boundaries *NC* of cuts by complete graphs and "cut off" the isolated corners we obtain a connected graph \hat{X} . $X \rightarrow \hat{X}, \quad C \rightarrow \hat{C}$, the structure essentially remains the same.

Set $S = \{NC \mid C \in \hat{C}\}$. For $E, F \in \hat{C}$ put $E \sim F$ if either

(i) E = F or

(ii)
$$NE \neq NF$$
 and $E^* \subset F$
and if $E^* \subset D \subset F$, for $D \in \hat{C}$, then $D = F$,
and if $E^* \subset D^* \subset F$, for $D \in \hat{C}$, then $E = D$.

tree T: $ET = \hat{C}$,

When we replace the boundaries *NC* of cuts by complete graphs and "cut off" the isolated corners we obtain a connected graph \hat{X} . $X \rightarrow \hat{X}, \quad C \rightarrow \hat{C}$, the structure essentially remains the same.

Set $S = \{NC \mid C \in \hat{C}\}$. For $E, F \in \hat{C}$ put $E \sim F$ if either

(i)
$$E = F$$
 or

(ii)
$$NE \neq NF$$
 and $E^* \subset F$
and if $E^* \subset D \subset F$, for $D \in \hat{C}$, then $D = F$,
and if $E^* \subset D^* \subset F$, for $D \in \hat{C}$, then $E = D$.

tree T: $ET = \hat{C}$, $VT = S \cup \hat{C} / \sim$.

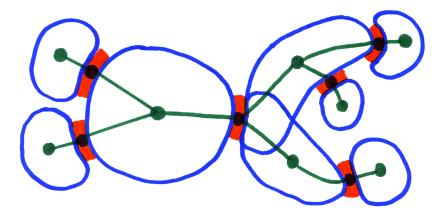
When we replace the boundaries *NC* of cuts by complete graphs and "cut off" the isolated corners we obtain a connected graph \hat{X} . $X \rightarrow \hat{X}, \quad C \rightarrow \hat{C}$, the structure essentially remains the same.

Set $S = \{NC \mid C \in \hat{C}\}$. For $E, F \in \hat{C}$ put $E \sim F$ if either

(i) E = F or

(ii)
$$NE \neq NF$$
 and $E^* \subset F$
and if $E^* \subset D \subset F$, for $D \in \hat{C}$, then $D = F$,
and if $E^* \subset D^* \subset F$, for $D \in \hat{C}$, then $E = D$.

tree T: $ET = \hat{C}$, $VT = S \cup \hat{C} / \sim$. t(E) = NE of $E \in \hat{C}$ and o(E) is the \sim -class which contains E.



三 のへぐ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

G-cut-systems and *G*-trees

-

イロン イヨン イヨン イ

Main Theorem (Dunwoody, Krön)

Every G-cut-system in a connected G-graph contains a minimal nested G-subsystem.

∃ ▶ ∢

Main Theorem (Dunwoody, Krön)

Every G-cut-system in a connected G-graph contains a minimal nested G-subsystem.

Consequence: G acts on the tree T.

Main Theorem (Dunwoody, Krön)

Every G-cut-system in a connected G-graph contains a minimal nested G-subsystem.

Consequence: G acts on the tree T.

This generalizes edge cuts to vertex cuts, see Dunwoody "Cutting up graphs" (1982), Dicks and Dunwoody "Groups acting on graphs" (1989).

Application 1: New proof of Stallings' theorem

When applying the arguments in the new proof to the classical context we obtain a relatively simple proof of Stallings' theorem on ends of groups.

Theorem (Stallings' structure theorem, 1969)

Let G be a finitely generated group. Then

G has a Cayley graph with more than one end \iff G splits over a finite subgroup

Theorem (Stallings' structure theorem, 1969)

Let G be a finitely generated group. Then

G has a Cayley graph with more than one end \iff *G* splits over a finite subgroup

Theorem (D., K. 2009)

Let G be any group. Then

Theorem (Stallings' structure theorem, 1969)

Let G be a finitely generated group. Then

G has a Cayley graph with more than one end \iff G splits over a finite subgroup

Theorem (D., K. 2009)

Let G be any group. Then

G has a Cayley graph with more than one end \iff G splits over a finite subgroup.