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Abstract

We discuss properties of the linear drift of the Brownian motion
on a regular Riemannian cover. It is compared with other asymptotic
quantities.

Let π : M̃ → M be a regular Riemannian cover of a compact manifold:
M̃ is a Riemannian manifold and there is a discrete group Γ of isometries of
M̃ such that the quotient M = Γ \ M̃ is a compact manifold. The quotient
metric makes M a compact Riemannian manifold.

We consider the Laplacean ∆̃,∆ on M̃ and M , the corresponding heat
kernels p̃(t, x̃, ỹ), p(t, x, y) and the associated Brownian motions X̃,X. The
following quantities were introduced by Guivarc’h ([G]) and Kaimanovich
([K1]), respectively, as almost everywhere limits on the space of trajectories
of the Brownian motion X̃:

• the linear drift ` := lim
t→∞

1
t
dfM (X̃0, X̃t),

• the entropy h := lim
t→∞
−1
t

ln p̃(t, X̃0, X̃t).

1 Statement

In this talk, we announce the following result (Work in Progress):
∗Supported in part by NSF grant DMS-0801127.
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Theorem 1 Let π : M̃ → M be a regular Riemannian cover of a compact
manifold. With the above notations, we have:

`2 ≤ h. (1)

Comments.
1. Inequality (1) is sharp: if M̃ is the hyperbolic space Hn, `2 = h =

(n− 1)2.
2. Similar quantities can be defined for a symmetric random walk on

a finitely generated group, where the distance on the group is the word
distance. It is known that, given a finite symmetric generating set S, there
is a constant c(G,S) such that `2 ≤ c(G,S)h (Varopoulos [Va] for a random
walk with finite support, Erschler-Karlsson with finite second moment [EK]).

3. In particular, whenever h = 0, which is equivalent to the Liouville
property of M̃ , then ` = 0, as shown in [KL1].

4. In the case when M̃ is the universal covering of a compact manifold
with negative curvature, inequality (1) is due to V. Kaimanovich ([K1]).
Moreover, in that case, there is equality in (1) if, and only if, the manifold
M is locally symmetric. What equality entails in the general case is not
clear yet.

5. Let v be the volume growth of M̃

v := lim
R→∞

1
R

lnV ol(BfM (x0, R)),

where BfM (x0, R) is the ball of radius R in M̃ about a given point x0 and
V ol is the Riemannian volume. It holds: h ≤ `v([G]).

Corollary 2 In the setting of Theorem 1, we have ` ≤ v and h ≤ v2. Either
equality ` = v, h = v2 implies equality in (1).

6. Let λ be the bottom of the spectrum of the Laplacean on M̃ : λ :=

inf
f∈C2

K(fM)

∫fM ‖∇f‖2∫fM |f |2 . Clearly (by considering C2
K approximations to the func-

tions e−sd(x0,.) for s > v/2), we have 4λ ≤ v2. It can be shown that 4λ ≤ h
([L1]). Therefore,

Corollary 3 In the setting of Theorem 1, equality 4λ = v2 implies equality
in (1).
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2 Sketch of the proof of Theorem 1

We construct the horospheric suspension of the action of Γ on M̃ . Since the
space M̃ is a Riemannian manifold with bounded sectional curvature, it is a
proper metric space (closed bounded subsets are compact) and we consider
the Busemann compactification of M̃ . Fix a point x0 ∈ M̃ and define, for
x ∈ M̃ the function ξx(z) on M̃ by:

ξx(z) = d(x, z)− d(x, x0).

The assignment x 7→ ξx is continuous, injective and takes values in a rela-
tively compact set of functions for the topology of uniform convergence on
compact subsets of M̃ . The Busemann compactification M̂ of M̃ is the
closure of M̃ for that topology. The space M̂ is a compact separable space.
The Busemann boundary ∂M̃ := M̂ \ M̃ is made of Lipschitz continuous
functions ξ on M̃ such that ξ(x0) = 0. Elements of ∂M̃ are called horofunc-
tions. Observe that we may extend by continuity the action of Γ from M̃ to
M̂ , in such a way that for ξ in M̂ and γ in Γ:

γ.ξ(z) = ξ(γ−1z)− ξ(γ−1(x0)).

We define now the horospheric suspension XM of M as the quotient of
the space M̃ × M̂ by the diagonal action of Γ. The projection onto the first
component in M̃ × M̂ factors into a projection from XM to M so that the
fibers are isometric to M̂ . It is clear that the space XM is metric compact.
To each point ξ ∈ M̂ is associated the projection Wξ of M̃ × {ξ}. As a
subgroup of Γ, the stabilizer Γξ of the point ξ acts discretely on M̃ and the
space Wξ is homeomorphic to the quotient of M̃ by Γξ. We put on each Wξ

the smooth structure and the metric inherited from M̃ . The manifold Wξ

and its metric vary continuously on XM . The collection of all Wξ, ξ ∈ M̂
form a continuous lamination WM with leaves which are manifolds locally
modeled on M̃ . In particular, it makes sense to differentiate along the
leaves of the lamination and we denote ∆W the laminated Laplace operator
acting on functions which are smooth along the leaves of the lamination. A
probability measure m on XM is called harmonic if, for any function f for
which it makes sense, we have:∫

∆Wfdm = 0.

By [Ga], there exist harmonic measures and the set of harmonic probability
measures is a weak* compact set of measures on XM . Moreover, if m is a
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harmonic measure, and m̃ is the Γ invariant measure which extends m on
M̃ × M̂ , then ([Ga]) there is a finite measure ν on M̂ , and for ν almost
every ξ, a positive harmonic function k(x, ξ) with k(x0, ξ) = 1 such that the
measure m̃ can be written as:

m̃ = k(x, ξ)(dx× ν(dξ)).

The harmonic probability measure m is called ergodic harmonic if it is
extremal among harmonic probability measures. In this case, for ν almost
all ξ, the following limits exist along almost every trajectory of the Brownian
motion (see [K2]):

• the linear drift `(m) := lim
t→∞

1
t
ξ(X̃t),

• the tranverse entropy k(m) := lim
t→∞
−1
t

ln k(X̃t, ξ).

It was proven by Kaimanovich ([K2]) that 0 ≤ k(m) ≤ h. The proof of
Theorem 1 reduces to the two following results:

Proposition 4 With the above notations, there exists an ergodic harmonic
measure m such that `(m) = `.

Proposition 5 For all ergodic harmonic measure m, we have `2(m) ≤
k(m), with equality if, and only if, the harmonic functions kξ are such that,
for almost every ξ, log kξ is proportional to ξ.

The proof of Proposition 4 is an extension of the proof the Furstenberg
formula in [KL2]. Kaimanovich ([K2]) proved Proposition 5 under the hy-
pothesis that the horofunctions are of class C2 by applying Itô’s formula
to the function ξ. In the general case, horofunctions are only uniformly
1-Lipschitz, but an integrated form of the same idea yields the same result.

3 Further properties in the case of negative cur-
vature

The case when the manifold M has negative sectional curvature and M̃ is the
universal cover of M is familiar: the Busemann boundary is the geometric
boundary. The unit tangent bundle T 1M is homeomorphic to aW-saturated
subset of XM and the laminationW restricted to T 1M is the stable foliation
of the geodesic flow. Using tools from the ergodic theory of Anosov flows,
one can show that the process dfM (X̃0, X̃t) has the qualitative properties of
a real Brownian motion. In particular:
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Theorem 6 [Central Limit Theorem [L2]] There is a positive number σ
such that, as t goes to infinity, the distribution of the variable

1
σ
√
t

(
dfM (X̃0, X̃t)− t`

)
(2)

converges towards the normal distribution.

Set G(x̃, ỹ) for the Green function on M̃ , G(x̃, ỹ) =
∫∞
0 p̃(t, x̃, ỹ)dt.

Theorem 7 [Renewal Theorem [L3]] Consider, for R > 0, the integral
U(R) of the Green function G(x̃, ỹ) on the sphere S(x̃, R) of center x̃ and
radius R. Then, as R goes to infinity,

U(R)→ 1
`
.

Theorem 7 appears as a renewal theorem for the process dfM (x̃, X̃t), since
U(R) =

∫∞
0 ϕ(t, R)dt, where ϕ(t, R) :=

∫
S(ex,R) p̃(t, x̃, ỹ)dỹ is the occupation

density at R of the process dfM (x̃, X̃t).
Theorem 6 does not hold in the general case (see [E] for an example in

the case of random walks). A question is whether Theorem 7 holds for all
coverings such that the Brownian motion is transient on M̃ .
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