Linear drift on regular covers

François Ledrappier^{*} University of Notre Dame and C.N.R.S., Université Paris VI

August 18, 2009

Abstract

We discuss properties of the linear drift of the Brownian motion on a regular Riemannian cover. It is compared with other asymptotic quantities.

Let $\pi: \widetilde{M} \to M$ be a regular Riemannian cover of a compact manifold: \widetilde{M} is a Riemannian manifold and there is a discrete group Γ of isometries of \widetilde{M} such that the quotient $M = \Gamma \setminus \widetilde{M}$ is a compact manifold. The quotient metric makes M a compact Riemannian manifold.

We consider the Laplacean Δ, Δ on \widetilde{M} and M, the corresponding heat kernels $\widetilde{p}(t, \widetilde{x}, \widetilde{y}), p(t, x, y)$ and the associated Brownian motions \widetilde{X}, X . The following quantities were introduced by Guivarc'h ([G]) and Kaimanovich ([K1]), respectively, as almost everywhere limits on the space of trajectories of the Brownian motion \widetilde{X} :

- the linear drift $\ell := \lim_{t \to \infty} \frac{1}{t} d_{\widetilde{M}}(\widetilde{X}_0, \widetilde{X}_t),$
- the entropy $h := \lim_{t \to \infty} -\frac{1}{t} \ln \widetilde{p}(t, \widetilde{X}_0, \widetilde{X}_t).$

1 Statement

In this talk, we announce the following result (Work in Progress):

^{*}Supported in part by NSF grant DMS-0801127.

Theorem 1 Let $\pi : \widetilde{M} \to M$ be a regular Riemannian cover of a compact manifold. With the above notations, we have:

$$\ell^2 \le h. \tag{1}$$

Comments.

1. Inequality (1) is sharp: if \widetilde{M} is the hyperbolic space \mathbb{H}^n , $\ell^2 = h = (n-1)^2$.

2. Similar quantities can be defined for a symmetric random walk on a finitely generated group, where the distance on the group is the word distance. It is known that, given a finite symmetric generating set S, there is a constant c(G, S) such that $\ell^2 \leq c(G, S)h$ (Varopoulos [Va] for a random walk with finite support, Erschler-Karlsson with finite second moment [EK]).

3. In particular, whenever h = 0, which is equivalent to the Liouville property of \widetilde{M} , then $\ell = 0$, as shown in [KL1].

4. In the case when \widetilde{M} is the universal covering of a compact manifold with negative curvature, inequality (1) is due to V. Kaimanovich ([K1]). Moreover, in that case, there is equality in (1) if, and only if, the manifold M is locally symmetric. What equality entails in the general case is not clear yet.

5. Let v be the volume growth of \widetilde{M}

$$v := \lim_{R \to \infty} \frac{1}{R} \ln Vol(B_{\widetilde{M}}(x_0, R)),$$

where $B_{\widetilde{M}}(x_0, R)$ is the ball of radius R in \widetilde{M} about a given point x_0 and Vol is the Riemannian volume. It holds: $h \leq \ell v([G])$.

Corollary 2 In the setting of Theorem 1, we have $\ell \leq v$ and $h \leq v^2$. Either equality $\ell = v$, $h = v^2$ implies equality in (1).

6. Let λ be the bottom of the spectrum of the Laplacean on \widetilde{M} : $\lambda := \inf_{f \in C_K^2(\widetilde{M})} \frac{\int_{\widetilde{M}} \|\nabla f\|^2}{\int_{\widetilde{M}} |f|^2}$. Clearly (by considering C_K^2 approximations to the functions $e^{-sd(x_0,\cdot)}$ for s > v/2), we have $4\lambda \leq v^2$. It can be shown that $4\lambda \leq h$ ([L1]). Therefore,

Corollary 3 In the setting of Theorem 1, equality $4\lambda = v^2$ implies equality in (1).

2 Sketch of the proof of Theorem 1

We construct the horospheric suspension of the action of Γ on \widetilde{M} . Since the space \widetilde{M} is a Riemannian manifold with bounded sectional curvature, it is a proper metric space (closed bounded subsets are compact) and we consider the Busemann compactification of \widetilde{M} . Fix a point $x_0 \in \widetilde{M}$ and define, for $x \in \widetilde{M}$ the function $\xi_x(z)$ on \widetilde{M} by:

$$\xi_x(z) = d(x, z) - d(x, x_0).$$

The assignment $x \mapsto \xi_x$ is continuous, injective and takes values in a relatively compact set of functions for the topology of uniform convergence on compact subsets of \widetilde{M} . The Busemann compactification \widehat{M} of \widetilde{M} is the closure of \widetilde{M} for that topology. The space \widehat{M} is a compact separable space. The Busemann boundary $\partial \widetilde{M} := \widehat{M} \setminus \widetilde{M}$ is made of Lipschitz continuous functions ξ on \widetilde{M} such that $\xi(x_0) = 0$. Elements of $\partial \widetilde{M}$ are called horofunctions. Observe that we may extend by continuity the action of Γ from \widetilde{M} to \widehat{M} , in such a way that for ξ in \widehat{M} and γ in Γ :

$$\gamma.\xi(z) = \xi(\gamma^{-1}z) - \xi(\gamma^{-1}(x_0)).$$

We define now the horospheric suspension X_M of M as the quotient of the space $\widetilde{M} \times \widehat{M}$ by the diagonal action of Γ . The projection onto the first component in $\widetilde{M} \times \widehat{M}$ factors into a projection from X_M to M so that the fibers are isometric to \widehat{M} . It is clear that the space X_M is metric compact. To each point $\xi \in \widehat{M}$ is associated the projection W_{ξ} of $\widetilde{M} \times \{\xi\}$. As a subgroup of Γ , the stabilizer Γ_{ξ} of the point ξ acts discretely on \widetilde{M} and the space W_{ξ} is homeomorphic to the quotient of \widetilde{M} by Γ_{ξ} . We put on each W_{ξ} the smooth structure and the metric inherited from \widetilde{M} . The manifold W_{ξ} and its metric vary continuously on X_M . The collection of all $W_{\xi}, \xi \in \widehat{M}$ form a continuous lamination \mathcal{W}_M with leaves which are manifolds locally modeled on \widetilde{M} . In particular, it makes sense to differentiate along the leaves of the lamination and we denote $\Delta^{\mathcal{W}}$ the laminated Laplace operator acting on functions which are smooth along the leaves of the lamination. A probability measure m on X_M is called *harmonic* if, for any function f for which it makes sense, we have:

$$\int \Delta^{\mathcal{W}} f dm = 0.$$

By [Ga], there exist harmonic measures and the set of harmonic probability measures is a weak^{*} compact set of measures on X_M . Moreover, if m is a

harmonic measure, and \widetilde{m} is the Γ invariant measure which extends m on $\widetilde{M} \times \widehat{M}$, then ([Ga]) there is a finite measure ν on \widehat{M} , and for ν almost every ξ , a positive harmonic function $k(x,\xi)$ with $k(x_0,\xi) = 1$ such that the measure \widetilde{m} can be written as:

$$\widetilde{m} = k(x,\xi)(dx \times \nu(d\xi)).$$

The harmonic probability measure m is called ergodic harmonic if it is extremal among harmonic probability measures. In this case, for ν almost all ξ , the following limits exist along almost every trajectory of the Brownian motion (see [K2]):

- the linear drift $\ell(m) := \lim_{t \to \infty} \frac{1}{t} \xi(\widetilde{X}_t),$
- the transverse entropy $k(m) := \lim_{t \to \infty} -\frac{1}{t} \ln k(\widetilde{X}_t, \xi).$

It was proven by Kaimanovich ([K2]) that $0 \le k(m) \le h$. The proof of Theorem 1 reduces to the two following results:

Proposition 4 With the above notations, there exists an ergodic harmonic measure m such that $\ell(m) = \ell$.

Proposition 5 For all ergodic harmonic measure m, we have $\ell^2(m) \leq k(m)$, with equality if, and only if, the harmonic functions k_{ξ} are such that, for almost every ξ , $\log k_{\xi}$ is proportional to ξ .

The proof of Proposition 4 is an extension of the proof the Furstenberg formula in [KL2]. Kaimanovich ([K2]) proved Proposition 5 under the hypothesis that the horofunctions are of class C^2 by applying Itô's formula to the function ξ . In the general case, horofunctions are only uniformly 1-Lipschitz, but an integrated form of the same idea yields the same result.

3 Further properties in the case of negative curvature

The case when the manifold M has negative sectional curvature and \widetilde{M} is the universal cover of M is familiar: the Busemann boundary is the geometric boundary. The unit tangent bundle T^1M is homeomorphic to a \mathcal{W} -saturated subset of X_M and the lamination \mathcal{W} restricted to T^1M is the stable foliation of the geodesic flow. Using tools from the ergodic theory of Anosov flows, one can show that the process $d_{\widetilde{M}}(\widetilde{X}_0, \widetilde{X}_t)$ has the qualitative properties of a real Brownian motion. In particular:

Theorem 6 [Central Limit Theorem [L2]] There is a positive number σ such that, as t goes to infinity, the distribution of the variable

$$\frac{1}{\sigma\sqrt{t}} \left(d_{\widetilde{M}}(\widetilde{X}_0, \widetilde{X}_t) - t\ell \right) \tag{2}$$

converges towards the normal distribution.

Set $G(\widetilde{x}, \widetilde{y})$ for the Green function on \widetilde{M} , $G(\widetilde{x}, \widetilde{y}) = \int_0^\infty \widetilde{p}(t, \widetilde{x}, \widetilde{y}) dt$.

Theorem 7 [Renewal Theorem [L3]] Consider, for R > 0, the integral U(R) of the Green function $G(\tilde{x}, \tilde{y})$ on the sphere $S(\tilde{x}, R)$ of center \tilde{x} and radius R. Then, as R goes to infinity,

$$U(R) \to \frac{1}{\ell}.$$

Theorem 7 appears as a renewal theorem for the process $d_{\widetilde{M}}(\widetilde{x}, \widetilde{X}_t)$, since $U(R) = \int_0^\infty \varphi(t, R) dt$, where $\varphi(t, R) := \int_{S(\widetilde{x}, R)} \widetilde{p}(t, \widetilde{x}, \widetilde{y}) d\widetilde{y}$ is the occupation density at R of the process $d_{\widetilde{M}}(\widetilde{x}, \widetilde{X}_t)$.

Theorem 6 does not hold in the general case (see [E] for an example in the case of random walks). A question is whether Theorem 7 holds for all coverings such that the Brownian motion is transient on \widetilde{M} .

References

- [E] A. Erschler, On drift and entropy growth for random walks on groups, Ann. Prob., 31 (2003), 1193–1204.
- [EK] A. Erschler and A. Karlsson, Homomorphisms to \mathbb{R} constructed from random walks, *preprint*.
- [Ga] L. Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal., 51 (1983), 285–311.
- [G] Y. Guivarc'h, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, Astérisque, 74 (1980) 47–98.
- [K1] V. A. Kaimanovich, Brownian motion and harmonic functions on covering manifolds. An entropic approach. *Soviet Math. Dokl.* 33 (1986), no. 3, 812–816.
- [K2] V.A. Kaimanovich, Brownian motion on foliations: Entropy, invariant measures, mixing, Funct. Anal. Appl. 22 (1989), 326–328.

- [KL1] A. Karlsson, F. Ledrappier, Propriété de Liouville et vitesse de fuite du mouvement Brownien, C. R. Acad. Sciences Paris, Ser. I, 344 (2007), 685–690.
- [KL2] A. Karlsson, F. Ledrappier: Noncommutative ergodic Theorems, preprint.
- [L1] F. Ledrappier, Harmonic measures and Bowen-Margulis measures, Israel J. Maths, 71 (1990), 275–287.
- [L2] F. Ledrappier, Central limit theorem in negative curvature, Ann. Proba., 23(1995), 1219–1233.
- [L3] F. Ledrappier, A renewal theorem for the distance in negative curvature, in Stochastic Analysis (Ithaca, NY,1993). Proc. Symp. Pure Math. 57, AMS, Providence, RI, 351–360.
- [Va] N. Th. Varopoulos, Long range estimates for Markov chains, Bull. Sci. Math. 109 (1985) 225–252.

fledrapp@nd.edu francois.ledrappier@upmc.fr