Abelian Sandpile Model and Self-Similar Groups

Tatiana Nagnibeda

Université de Genève Fonds National Suisse de Recherche Scientifique

"Boundaries", Graz, June 2009

- G a finite connected graph.
- $\theta: V(G) \rightarrow N$ configuration of the game on G:
- $\theta(v)$ is the number of chips at vertex v.
- Game move : if $\theta(v) \ge \deg(v)$, then v is "unstable" and will be "toppled" (or "fired"): $\theta'(v) = \theta(v) - \deg(v)$; $\theta'(w) = \theta(w) + Adj(v,w)$. Objective : stabilize an unstable configuration.
- The total number of chips is at most $\beta_1(G)$
- (Björner, Lovasz, Shor, '91)
- or \Rightarrow any configuration There is at least one dissipative vertex v_0 stabilizes in finite time (Dhar, '90)

Abelian property : the resulting stable configuration doesn't depend on the order in which unstable vertices were toppled.

(Dhar, '90; Björner-Lovasz-Shor, '91)

The process.

Once stabilized, we reactivate the game by dropping a new chip at random on $V(G) \setminus \{v_0\}$.

- S = {stable configurations}
- Operators A_v acting on S, $v \in V(G) \setminus \{v_0\}$:

 $A_v(\theta) = stab(\theta + \delta_v)$

Avalanche = sequence of topplings which occur as a result of application of A_v

Let θ be a stable configuration.

 $\begin{array}{lll} \theta_1 = \theta & \rightarrow & \theta_1 + \delta_{x_1} \hspace{0.1cm}; \hspace{0.1cm} x_1 \hspace{0.1cm} \text{a vertex picked at random} \\ & & & & \downarrow \hspace{0.1cm} \text{an "avalanche" occurs} \\ & & & \theta_2 = \hspace{0.1cm} \text{stab}(\theta_1 + \delta_{x_1}) \rightarrow \hspace{0.1cm} \theta_2 + \delta_{x_2} \hspace{0.1cm}; \hspace{0.1cm} x_2 \hspace{0.1cm} \text{picked at random} \\ & & & \downarrow \hspace{0.1cm} \text{avalanche} \\ & & & \text{stab}(\theta_2 + \delta_{x_2}) \hspace{0.1cm} \text{etc.} \end{array}$

Markov chain on the set S of stable configurations {Stable config-s} = Recurrent Ů Transient

Recurrent = Critical,

- i.e., configurations without forbidden sub-configuration. Sandpile cellular automaton.
- Let U a subset of V(G). A sub-configuration $\theta|_U$
- Is forbidden if for $\forall v \text{ in } U, \theta(v) < \deg_{U}(v)$.
- The set of critical (or allowed) configurations is stable
- under the dynamics of the model.
- "The critical configurations are those which are
- barely stable." (P. Bak)
- Burning algorithm: describes recurrent configurations
- and establishes bijection with spanning trees. (Dhar, '91)

Operators A_v : Stable \rightarrow Stable

 $\theta \rightarrow \text{stab}(\theta + \delta_v)$

generate a commutative semi-group.

- It becomes a (finite, Abelian) group when restricted to Recurrent configurations.
- $$\begin{split} & \operatorname{Crit}(G) = < A_v \big|_{\operatorname{Reccurent}} \text{ ; } v \in V(G) \setminus \{v_0\} > \\ & \left|\operatorname{Crit}(G)\right| = \operatorname{complexity}(G) \text{ . (Corollary of the burning algorithm).} \end{split}$$
- Crit(G) \approx {Recurrent configurations, \oplus }. θ , θ' recurrent; $\theta \oplus \theta' := \operatorname{stab}(\theta + \theta')$ Stationary distribution for the Markov chain is the uniform distribution μ on Crit(G).

Jacobian of a finite graph

- G a finite connected graph.
- d: $C^0(G,R) \rightarrow C^1(G,R)$ boundary operator
- $e=(u,v) \in Edges(G), df(e) := f(v)-f(u).$
- Laplacian on $G = d^*d$
- d d* = Laplacian on the 1-forms
- Harm¹(G,R) = space of flows. Dimension = $\beta_1(G)$.
- Λ : = Harm¹(G,R) \cap C¹(G,R) lattice of integral flows.

Bacher-de la Harpe-N. '97

 $\Lambda^{\#}/\Lambda$ is a finite abelian group called Jacobian of G. Biggs '98 : Crit(G) \approx Jac(G)

More on Jacobians of finite graphs :

- Bacher de la Harpe N. ('97) :
 - Abel-Jacobi map $J_v: V(G) \rightarrow Jac(G)$. It is harmonic.
 - Jac (G) ≈ Picard group of G ;
 - Universal property of Jac(G).

Baker – Norine ('07) : Riemann - Roch Theorem.

Similar construction: Kotani-Sunada ('01): use Jacobian(G) to study random walks on abelian covers of G (crystal lattices).

Caporaso - Viviani ('09) : Torelli Theorem.

Mikhalkin - Zharkov ('08) : Jacobian of a tropical curve.

40000 grains dropped at the point (0,0) in the square 120x120 Image due to Claudio Rocchini ('06), copyright

Bak, Tang, Wiesenfeld ('87): Self-Organized Criticality

- $\Gamma_n = (n \times n) square ; \Gamma_n \rightarrow Z^2 as n \rightarrow \infty$.
- $\Gamma_n \subset \Gamma_{n+1}$; $\partial \Gamma_n$ = dissipative vertices.
- ASM on Z² is critical, i.e., spatial correlations in the large volume decay with a power law.
- E.g., study asymptotical distributions of avalanches.
- Avalanche = the sequence of topplings triggered by adding a grain at some vertex $v_n \in V(\Gamma_n)$ on a critical configuration θ , taken uniformly at random over Crit(Γ_n).

Criticality :

Prob (avalanches of large size) \sim size $^{\text{-}\,\alpha}$, as $~n{\rightarrow}\infty$

What is known?

- **Γ = Bethe lattice** (infinite binary tree) :
- P [Mass(Aval) = k] ~ $k^{-3/2}$, n $\rightarrow \infty$ (Dhar).
- This is the only example with rigorously proven critical behavior.
- $\Gamma = Z^d$, $d \ge 2$: critical behavior is conjectured,
- according to phisysists' predictions. No rigorous proof.
- For d>4 the critical exponent is conjectured to be 3/2.
- **Γ** = Sierpinski gasket : conjecturally critical (numerical simulations)
- **Γ = Z (or virtually Z): no critical behaviour** (Redig, Dhar, Jarai-Lyons)

- Get more examples of critical ASM !

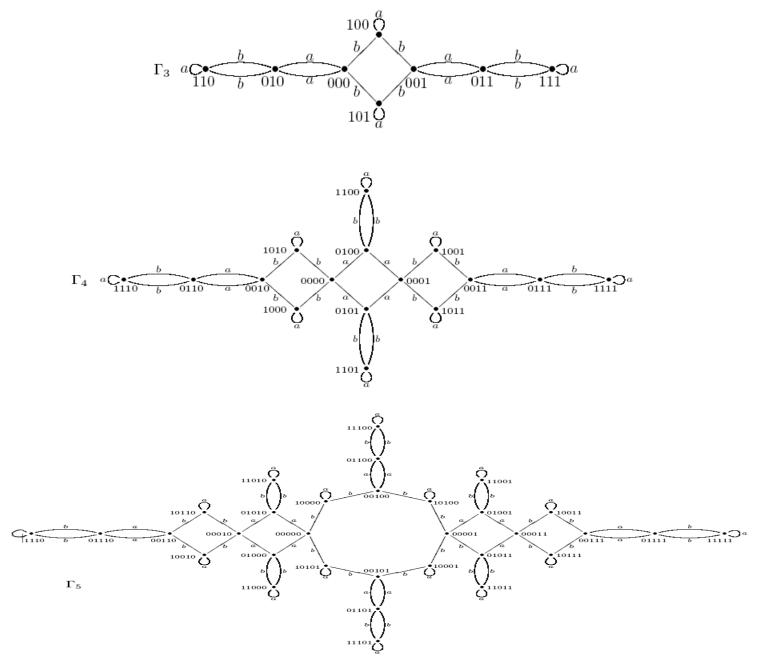
- Open problem :

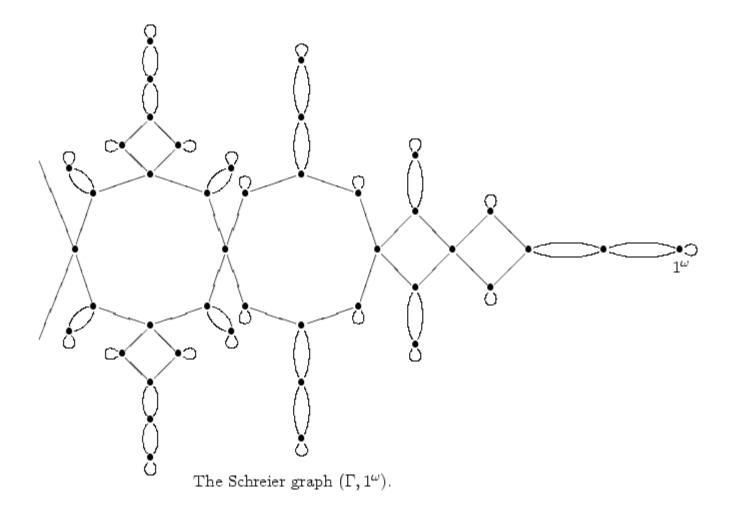
- Give a mathematical proof of criticality of ASM on Z²
- Find the critical exponent.

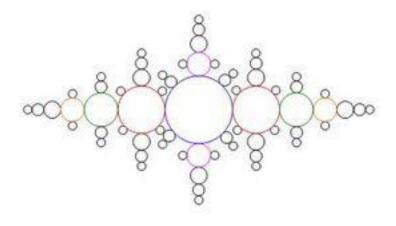
Result (Matter – N. '09) :

Uncountably many infinite 4-regular graphs with one end, of quadratic growth, with (rigorously proven) critical ASM.

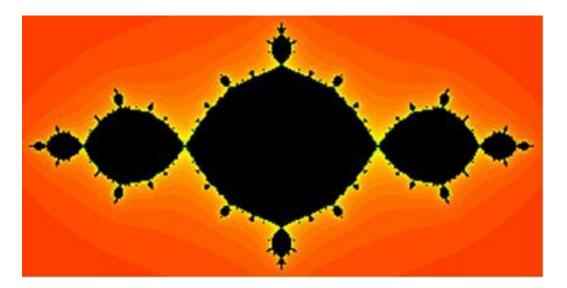
- Another interesting problem: define ASM in infinite volume. Done for Z^d (Jarai-Redig, Athreya-Jarai).







Scaling limit called Limit space of G (Nekrashevych)



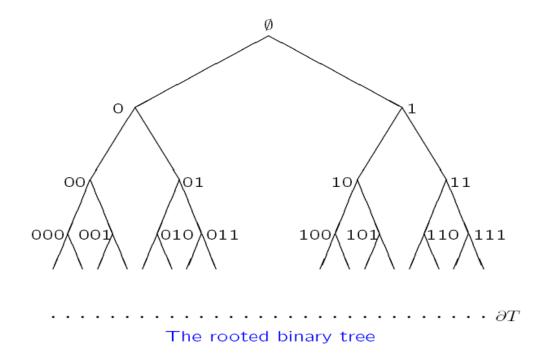
Julia set of z²-1

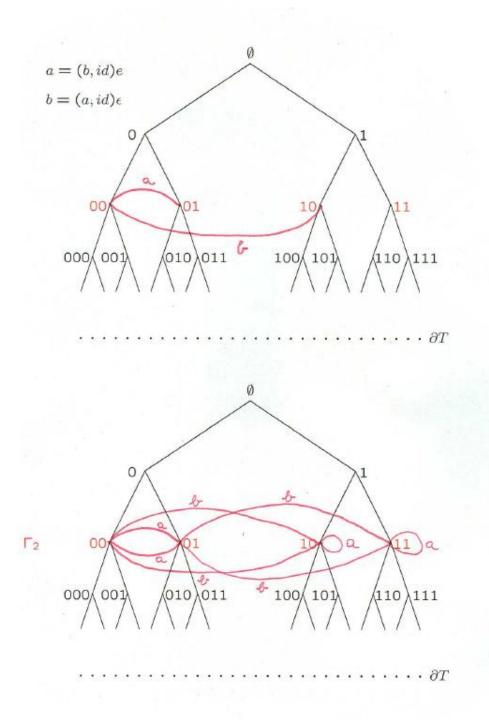
n→∞

 Γ_6

Schreier graphs of self-similar groups

T=T_d - infinite d-ary tree; V(T_d) = X*, X={0,...d-1}. G < Aut(T), G finitely generated. G acts also on $\partial T = \{ \xi = x_0 x_1 x_2 \}.$





G<Aut(T), transitive on levels. G = <S>

$$\Gamma_n = Sch (G, S, X_n)$$

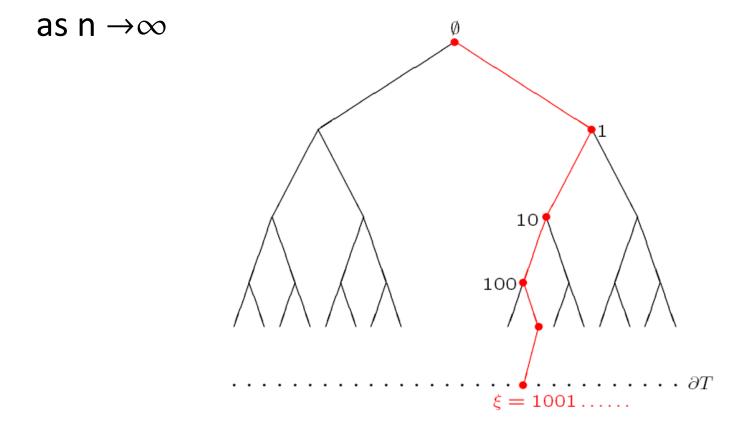
Vertices = X_n , Edges = {(v,s(v)) | s in S}

 $|Vert(\Gamma_n)| = d^n$

Let $\xi = x_0 x_1 x_2 \dots$ be a boundary point.

 Γ_{ξ} = Sch (G, S, Stab_G(ξ)) infinite (orbital) Schreier graph

 $(\Gamma_n, x_0...x_n) \rightarrow (\Gamma_{\xi}, \xi)$ in the space of rooted graphs.



Study ASM on Schreier graphs of self-similar groups

 $Γ_{\xi} an infinite Schreier graph, Γ_n finite Schreier graphs$ $Γ_n → Γ_{\xi} as n →∞. ξ=x_1x_2....$

 θ a critical configuration on Γ_n . Destabilize it by adding a grain at $x_1...x_n$.

Study the asymptotics of the triggered avalanches, under the stationary (uniform) distribution on Crit(Γ_n), as $n \rightarrow \infty$ (in large volume). Try to define a limit process on Γ_{ξ} . Key example: Basilica group B=<a,b>a=(b,id)e, b=(a,id) ε

Use classification of infinite Schreier graphs Γ_{ξ} as function of boundary point ξ (D'Angeli – Donno – Matter - N. '09).

- Recall: For Basilica, Γ_{ξ} has 1,2 or 4 ends.
- $E_1 = \{rays which give graphs with 1 end\}.$
- $E_1 = \{\xi = x_1y_1x_2y_2... \text{ both } \{x_i\} \text{ and } \{y_i\} \text{ have infinitely many } 1's\}.$
- E_1 is subset of ∂T of measure 1.
- E₁ is partitioned into uncountably many isomorphism classes, each of measure 0.

Sandpiles on Schreier graphs of Basilica (Matter-N. '09)

- $Γ_{\xi} a infinite Schreier graph, Γ_n finite Schreier graphs$ $<math>
 Γ_n → Γ_{\xi} as n → ∞.$ $ξ=x_1x_2....$
- Pick a critical configuration uniformly at random;
- destabilize it by adding a grain at $\xi_n {=} x_1 ... x_n$.
- Study the behavior of the triggered avalanche.

Thm . 1) Γ_{ξ} has 2 or 4 ends \Rightarrow non-critical behavior. 2) For almost every ξ in $E_{1,}$ avalanches on ($\Gamma_{\xi n}$) exhibit critical behavior as $n \rightarrow \infty$: $k^{-4/3} \leq P$ [Mass(Aval) = k] $\leq k^{-1}$. For ξ =1111..., P[Mass(Aval) = k] ~ k^{-1} To estimate the asymptotics of avalanches use

- Matter ('09) : Exact solution of the Abelian Sand-Pile model on "cycle-tree" graphs (cacti).
- Γ is a cycle-tree graph if it can be obtained from a tree by replacing edges by cycles.

Remark. Many self-similar groups have Schreier graphs cycle-trees (Nekrashevych)