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G a finite connected graph.
0: V(G) > N configuration of the game on G:
B(v) is the number of chips at vertex v.

Game move : if 0(v) >2deg(v), then v is
“unstable” and will be “toppled” (or “fired”):

0'(v) =0O(v) —deg(v); 06'(w)=0(w) + Adj(v,w).
Objective : stabilize an unstable configuration.

The total number of chips is at most £,(G)
(Bjorner, Lovasz, Shor, ‘91)
or = any configuration

There is at least one dissipative vertexv,  stabilizes in finite time
(Dhar, ‘90)



Abelian property : the resulting stable configuration
doesn’t depend on the order in which unstable

vertices were toppled.
(Dhar, ‘90; Bjorner-Lovasz-Shor, '91)

The process.

Once stabilized, we reactivate the game by
dropping a new chip at random on V(G)\{v,}.

S = {stable configurations}
Operators A,actingon S, v e V(G) \{v,} :
A, (0) = stab(® +6,)

Avalanche = sequence of topplings which occur as a
result of application of A,



Let O be a stable configuration.

0,=0 > 0,+9,, ; X, a vertex picked at random

4/ an “avalanche” occurs

0, = stab(6, +8,,) > 6,+0
J, avalanche

stab(0, + 6

x, s Xy picked at random

)  etc.

Markov chain on the set S of stable configurations

{Stable config-s} = Recurrent U Transient



Recurrent = Critical,

i.e., configurations without forbidden sub-configuration.
Sandpile cellular automaton.

Let U a subset of V(G). A sub-configuration 8],

Is forbidden if for V vin U, 8(v) < deg(v).

The set of critical (or allowed) configurations is stable

under the dynamics of the model.

“The critical configurations are those which are
barely stable.” (p.Bak)

Burning algorithm: describes recurrent configurations

and establishes bijection with spanning trees. (Dhar, ‘91)



Operators A, :Stable - Stable
6 > stab(0+6)
generate a commutative semi-group.
It becomes a (finite, Abelian) group when
restricted to Recurrent configurations.
Crit(G) = < A, | reccurent 3 V € V(G) \{vy} >
| Crit(G) | =complexity(G) . (Corollary of the burning algorithm).

Crit(G) ~ {Recurrent configurations, é}. 6, 0’ recurrent;

0 0O := stab(6 + 6)
Stationary distribution for the Markov chain is the uniform
distribution u on Crit(G).



Jacobian of a finite graph

G a finite connected graph.

d: C%G,R) — CYG,R) boundary operator
e=(u,v) € Edges(G), df(e) := f(v)-f(u).

Laplacian on G = d*d

d d* = Laplacian on the 1-forms

Harm(G,R) = space of flows. Dimension =/,(G).
A :=Harm(G,R) N C{G,R) lattice of integral flows.
Bacher-de la Harpe-N. 97

A*/ A is a finite abelian group called Jacobian of G.
Biggs ‘98 : Crit(G) ~ Jac(G)



More on Jacobians of finite graphs:

Bacher - de la Harpe - N. (‘97) :
- Abel-Jacobi map J,: V(G) — Jac(G) . Itis harmonic.
- Jac (G) = Picard group of G ;
- Universal property of Jac(G) .

Baker — Norine (‘O7) : Riemann - Roch Theorem.

Similar construction: Kotani-Sunada (’01) : use Jacobian(G) to study
random walks on abelian covers of G (crystal lattices).

Caporaso - Viviani ('09) : Torelli Theorem.

Mikhalkin - Zharkov ('08) : Jacobian of a tropical curve.
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40000 grains dropped at the point (0,0) in the square 120x120
Image due to Claudio Rocchini (‘06), copyright



Bak, Tang, Wiesenfeld (‘87):
Self-Organized Criticality

= (nxn)-square ; [ > 7% as n>.
I' crl,..; or, = dissipative vertices.

ASM on Z? is critical, i.e., spatial correlations in the
large volume decay with a power law.

E.g., study asymptotical distributions of avalanches.

Avalanche = the sequence of topplings triggered by adding

a grain at some vertex v, €V(l' ) on a critical configuration 6,
taken uniformly at random over Crit(l",).

Criticality :

Prob ( avalanches of large size) ~ size "% , as n—oo



What is known?
[ = Bethe lattice (infinite binary tree) :

P [Mass(Aval) = k] ~ k3/2, n>eo (Dhar).

This is the only example with rigorously
proven critical behavior.

=29, d>2: critical behavior is conjectured,

according to phisysists’ predictions. No rigorous proof.
For d>4 the critical exponent is conjectured to be 3/2.

[ = Sierpinski gasket : conjecturally critical (numerical
simulations)

=2 (or virtually Z): no critical behaviour (Redig, Dhar,
Jarai-Lyons)



- Get more examples of critical ASM !
- Open problem :

Give a mathematical proof of criticality of ASM on 22
Find the critical exponent.

Result (Matter — N. ‘09) :

Uncountably many infinite 4-regular graphs with one
end, of quadratic growth, with (rigorously proven)
critical ASM.

- Another interesting problem: define ASM in infinite
volume. Done for 79 (Jarai-Redig, Athreya-Jarai).
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Scaling limit
n—oo " called Limit space of G
(Nekrashevych)

Julia set of z2-1



Schreier graphs of self-similar groups

T=T, -infinite d-ary tree; V(T,) = X*, X={0,...d-1}.
G < Aut(T), G finitely generated.
G acts also on OT = { &=xXX,..... }.
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G<Aut(T),
transitive on levels.
G =<S>

[, =Sch (G, S, X,)

Vertices = X,,,
Edges = {(v,s(v)) | sin S}

|Vert(l )| =d"



Let &=xX,X,... be aboundary point.
[ =5ch (G, S, Stabg(¢)) infinite (orbital) Schreier graph

(M %g-%,) = ([, &) inthe space of rooted graphs.

dS N =00




Study ASM on Schreier graphs of
self-similar groups
[¢ an infinite Schreier graph, I, finite Schreier graphs
[, = T¢ as n—>oo, E=X1 X5 ...

© a critical configurationonT .
Destabilize it by adding a grain at x,...x,.

Study the asymptotics of the triggered avalanches,
under the stationary (uniform) distribution on Crit(l,),

as n —>ee (in large volume). Try to define a limit process on I



Key example: Basilica group B=<a,b>
a=(b,id)e, b=(a,id)e

Use classification of infinite Schreier graphs I'¢ as function of
boundary point ¢ (D’Angeli — Donno — Matter - N. '09).

Recall: For Basilica, e has 1,2 or 4 ends.

E, = {rays which give graphs with 1 end}.

E, = {§ = x,y,X,Y,... both {x.} and {y;} have infinitely many 1's}.
E, is subset of OT of measure 1.

E, is partitioned into uncountably many isomorphism classes,
each of measure 0.



Sandpiles on Schreier graphs of Basilica (Matter-N. '09)

[¢ a infinite Schreier graph, I finite Schreier graphs
[, T as n oo, E=X1 X5 ...

- Pick a critical configuration uniformly at random;

- destabilize it by adding a grain at ¢ =x,...x,, .

- Study the behavior of the triggered avalanche.

Thm . 1) I has 2 or 4 ends = non-critical behavior.
2) For almost every ¢ in E; avalanches on
(F¢,) exhibit critical behavior as n e :
k43 < P[Mass(Aval) =k] < k1.
For &=1111..., P[Mass(Aval)=k]~ k*



To estimate the asymptotics of avalanches use
Matter (‘09) : Exact solution of the Abelian Sand-Pile
model on “cycle-tree” graphs (cacti).

[is a cycle-tree graph if it can be obtained from a tree
by replacing edges by cycles.

Remark. Many self-similar groups have Schreier
graphs cycle-trees (Nekrashevych)



