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G a finite connected graph. 

θ: V(G) → N  configuration of the game on G: 

θ(v) is the number of chips at vertex v.

Game move :  if     θ(v) ≥ deg(v),    then  v  is 
“unstable” and will be “toppled”  (or “fired”):

θ’(v) = θ(v) – deg(v) ;      θ’(w) = θ(w) + Adj(v,w).

Objective : stabilize an unstable configuration.

The total number of chips is at most  1(G)

(BjÖrner, Lovasz, Shor, ‘91)

or                                                 any configuration 

There is at least one dissipative vertex v0           stabilizes in finite time

(Dhar, ‘90)



Abelian property :  the resulting stable configuration 
doesn’t depend on the order in which unstable 
vertices were toppled.

(Dhar, ‘90; Björner-Lovasz-Shor, ’91)

The process. 

Once stabilized, we reactivate the game by 
dropping a new chip at random on V(G)\{v0}.

S = {stable configurations}

Operators Av acting on S, v  V(G) \{v0} :

Av (θ) = stab(θ  + δv)

Avalanche = sequence of topplings which occur as a 
result of application of Av



Let θ be a stable configuration.

θ1 = θ     →     θ1 + δx1
;        x1 a vertex picked at random

↓ an “avalanche” occurs

θ2 =  stab(θ1 + δx1
) →  θ2 + δx2

;   x2 picked at random

↓  avalanche

stab(θ2 + δx2
)      etc.

Markov chain on the set S of stable configurations

{Stable config-s}  = Recurrent Ů  Transient             



Recurrent   =  Critical ,    
i.e., configurations without forbidden sub-configuration.  

Sandpile cellular automaton.  

Let U a subset of V(G). A sub-configuration θ|U

Is forbidden if  for  v in U, θ(v) < degU(v).   

The set of critical (or allowed) configurations is stable

under the dynamics of the model.

“The critical configurations are those which are

barely stable.”  (P. Bak)

Burning algorithm: describes recurrent configurations

and establishes bijection with spanning trees. (Dhar, ‘91)



Operators   Av : Stable   →   Stable

θ → stab(θ + δv)

generate a  commutative semi-group.

It becomes a (finite, Abelian) group when 

restricted to Recurrent configurations.

Crit(G) = < Av|Reccurent ; v  V(G) \{v0} >

|Crit(G)|=complexity(G) . (Corollary of the burning algorithm).

Crit(G)  {Recurrent configurations, }. θ, θ’ recurrent;

θ  θ’  :=  stab(θ + θ’)

Stationary distribution for the Markov chain is the uniform 

distribution  on Crit(G).



Jacobian of a finite graph
G a finite connected graph.

d: C0(G,R)   C1(G,R)  boundary operator

e=(u,v)  Edges(G), df(e) := f(v)-f(u).

Laplacian on G = dd

d d = Laplacian on the 1-forms

Harm1(G,R) = space of flows.  Dimension = 1(G).

 : = Harm1(G,R)  C1(G,R)  lattice of integral flows.

Bacher-de la Harpe-N. ’97

/  is a finite abelian group called Jacobian of G.

Biggs ‘98 :   Crit(G)  Jac(G)



More  on  Jacobians of  finite  graphs :

Bacher - de la Harpe - N. (‘97) :   

- Abel-Jacobi map   Jv: V(G)  Jac(G) .   It is harmonic.

- Jac (G) ≈ Picard group of G ;

- Universal property of Jac(G) .

Baker – Norine (‘07) : Riemann - Roch Theorem.

Similar construction: Kotani-Sunada ( ’01) :  use Jacobian(G)  to study 
random walks on abelian covers of G (crystal lattices).

Caporaso - Viviani (’09) :   Torelli Theorem.

Mikhalkin - Zharkov (’08) : Jacobian of a tropical curve.



40000 grains dropped at the point (0,0) in the square 120x120

Image due to Claudio Rocchini (‘06), copyright



Bak, Tang, Wiesenfeld (‘87): 
Self-Organized Criticality

Γn =  (nn) - square ;     Γn → Z2    as  n .            

Γn  Γn+1  ; Γn  =  dissipative vertices.

ASM on Z2 is critical, i.e., spatial correlations in the 
large volume decay with a power law.

E.g., study asymptotical distributions of avalanches. 

Avalanche = the sequence of topplings triggered by adding 

a grain at some vertex vn V(Γn) on a critical configuration θ, 
taken uniformly at random over Crit(Γn).

Criticality :

Prob ( avalanches of large size)  size -  , as  n



What is known?
Γ = Bethe lattice (infinite binary tree) : 

P [Mass(Aval) = k] ~ k-3/2, n→∞ (Dhar).   

This is the only example with rigorously                                   
proven critical behavior.

Γ = Zd , d≥2 : critical behavior is conjectured,

according to phisysists’ predictions.  No rigorous proof.

For d>4 the critical exponent is conjectured to be 3/2.

Γ = Sierpinski gasket :  conjecturally critical (numerical 
simulations)

Γ = Z (or virtually Z): no critical behaviour (Redig, Dhar,                                                                                                                    

Jarai-Lyons)



- Get more examples of critical ASM !

- Open problem :

Give a mathematical proof of criticality of ASM on Z2

Find the critical exponent.

Result  (Matter – N. ‘09) :

Uncountably many infinite 4-regular graphs with one 
end, of quadratic growth, with (rigorously proven) 
critical ASM.

- Another interesting problem: define ASM in infinite 
volume. Done for Zd (Jarai-Redig, Athreya-Jarai).







Γ6

Julia set of z2-1

…n→∞

Scaling limit 

called Limit space of G

(Nekrashevych)



Schreier graphs of self-similar groups

T=Td   - infinite d-ary tree;  V(Td) = X*, X={0,…d-1}.

G < Aut(T),   G finitely generated. 

G acts also on  ∂T = { ξ=x0x1x2….. }.



G<Aut(T), 
transitive on levels.  
G = <S>

Γn   = Sch (G, S, Xn)   

Vertices = Xn ,  
Edges = {(v,s(v)) | s in S}

|Vert(Γn)| = dn



Let   ξ=x0x1x2…   be a boundary point.

Γξ = Sch (G, S, StabG(ξ))    infinite (orbital) Schreier graph

(Γn ,x0…xn) → (Γξ , ξ) in the space of rooted graphs.

as n 



Study ASM on Schreier graphs of 
self-similar groups

Γξ an infinite Schreier graph, Γn finite Schreier graphs

Γn → Γξ as  n →∞.             ξ=x1x2….

θ a critical configuration on Γn . 

Destabilize it by adding a grain at x1…xn.

Study the asymptotics of the triggered avalanches,

under the stationary (uniform) distribution on Crit(Γn),

as  n →∞ (in large volume).    Try to define a limit process on Γξ .



Key example:    Basilica group    B=a,b

a=(b,id)e, b=(a,id)

Use classification of infinite Schreier graphs Γξ as function of 
boundary point ξ (D’Angeli – Donno – Matter - N. ’09).

Recall: For Basilica, Γξ has 1,2 or 4 ends. 

E1 = {rays which give graphs with 1 end}. 

E1 = {ξ = x1y1x2y2… both {xi} and {yi} have infinitely many 1’s}.

E1  is subset of  ∂T of measure 1.

E1 is partitioned into uncountably many isomorphism classes,

each of measure 0.



Sandpiles on Schreier graphs of Basilica (Matter-N. ’09)

Γξ a infinite Schreier graph, Γn finite Schreier graphs 
Γn→ Γξ as  n →∞.             ξ=x1x2….

- Pick a critical configuration uniformly at random;

- destabilize it by adding a grain at ξn=x1…xn .

- Study the behavior of the triggered avalanche.

Thm . 1) Γξ has 2 or 4 ends  non-critical behavior. 

2) For almost every ξ in E1, avalanches on 

(Γξn) exhibit critical behavior as n →∞ :

k-4/3   P [Mass(Aval) = k]   k-1  .  

For   ξ=1111…,      P*Mass(Aval) = k] ~ k-1 



To estimate the asymptotics of avalanches use 

Matter (‘09) : Exact solution of the Abelian Sand-Pile 
model on “cycle-tree” graphs (cacti).

Γ is a cycle-tree graph if it can be obtained from a tree

by replacing edges by cycles.

Remark. Many self-similar groups have Schreier

graphs cycle-trees   (Nekrashevych)


