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G a finite connected graph. 

θ: V(G) → N  configuration of the game on G: 

θ(v) is the number of chips at vertex v.

Game move :  if     θ(v) ≥ deg(v),    then  v  is 
“unstable” and will be “toppled”  (or “fired”):

θ’(v) = θ(v) – deg(v) ;      θ’(w) = θ(w) + Adj(v,w).

Objective : stabilize an unstable configuration.

The total number of chips is at most  1(G)

(BjÖrner, Lovasz, Shor, ‘91)

or                                                 any configuration 

There is at least one dissipative vertex v0           stabilizes in finite time

(Dhar, ‘90)



Abelian property :  the resulting stable configuration 
doesn’t depend on the order in which unstable 
vertices were toppled.

(Dhar, ‘90; Björner-Lovasz-Shor, ’91)

The process. 

Once stabilized, we reactivate the game by 
dropping a new chip at random on V(G)\{v0}.

S = {stable configurations}

Operators Av acting on S, v  V(G) \{v0} :

Av (θ) = stab(θ  + δv)

Avalanche = sequence of topplings which occur as a 
result of application of Av



Let θ be a stable configuration.

θ1 = θ     →     θ1 + δx1
;        x1 a vertex picked at random

↓ an “avalanche” occurs

θ2 =  stab(θ1 + δx1
) →  θ2 + δx2

;   x2 picked at random

↓  avalanche

stab(θ2 + δx2
)      etc.

Markov chain on the set S of stable configurations

{Stable config-s}  = Recurrent Ů  Transient             



Recurrent   =  Critical ,    
i.e., configurations without forbidden sub-configuration.  

Sandpile cellular automaton.  

Let U a subset of V(G). A sub-configuration θ|U

Is forbidden if  for  v in U, θ(v) < degU(v).   

The set of critical (or allowed) configurations is stable

under the dynamics of the model.

“The critical configurations are those which are

barely stable.”  (P. Bak)

Burning algorithm: describes recurrent configurations

and establishes bijection with spanning trees. (Dhar, ‘91)



Operators   Av : Stable   →   Stable

θ → stab(θ + δv)

generate a  commutative semi-group.

It becomes a (finite, Abelian) group when 

restricted to Recurrent configurations.

Crit(G) = < Av|Reccurent ; v  V(G) \{v0} >

|Crit(G)|=complexity(G) . (Corollary of the burning algorithm).

Crit(G)  {Recurrent configurations, }. θ, θ’ recurrent;

θ  θ’  :=  stab(θ + θ’)

Stationary distribution for the Markov chain is the uniform 

distribution  on Crit(G).



Jacobian of a finite graph
G a finite connected graph.

d: C0(G,R)   C1(G,R)  boundary operator

e=(u,v)  Edges(G), df(e) := f(v)-f(u).

Laplacian on G = dd

d d = Laplacian on the 1-forms

Harm1(G,R) = space of flows.  Dimension = 1(G).

 : = Harm1(G,R)  C1(G,R)  lattice of integral flows.

Bacher-de la Harpe-N. ’97

/  is a finite abelian group called Jacobian of G.

Biggs ‘98 :   Crit(G)  Jac(G)



More  on  Jacobians of  finite  graphs :

Bacher - de la Harpe - N. (‘97) :   

- Abel-Jacobi map   Jv: V(G)  Jac(G) .   It is harmonic.

- Jac (G) ≈ Picard group of G ;

- Universal property of Jac(G) .

Baker – Norine (‘07) : Riemann - Roch Theorem.

Similar construction: Kotani-Sunada ( ’01) :  use Jacobian(G)  to study 
random walks on abelian covers of G (crystal lattices).

Caporaso - Viviani (’09) :   Torelli Theorem.

Mikhalkin - Zharkov (’08) : Jacobian of a tropical curve.



40000 grains dropped at the point (0,0) in the square 120x120

Image due to Claudio Rocchini (‘06), copyright



Bak, Tang, Wiesenfeld (‘87): 
Self-Organized Criticality

Γn =  (nn) - square ;     Γn → Z2    as  n .            

Γn  Γn+1  ; Γn  =  dissipative vertices.

ASM on Z2 is critical, i.e., spatial correlations in the 
large volume decay with a power law.

E.g., study asymptotical distributions of avalanches. 

Avalanche = the sequence of topplings triggered by adding 

a grain at some vertex vn V(Γn) on a critical configuration θ, 
taken uniformly at random over Crit(Γn).

Criticality :

Prob ( avalanches of large size)  size -  , as  n



What is known?
Γ = Bethe lattice (infinite binary tree) : 

P [Mass(Aval) = k] ~ k-3/2, n→∞ (Dhar).   

This is the only example with rigorously                                   
proven critical behavior.

Γ = Zd , d≥2 : critical behavior is conjectured,

according to phisysists’ predictions.  No rigorous proof.

For d>4 the critical exponent is conjectured to be 3/2.

Γ = Sierpinski gasket :  conjecturally critical (numerical 
simulations)

Γ = Z (or virtually Z): no critical behaviour (Redig, Dhar,                                                                                                                    

Jarai-Lyons)



- Get more examples of critical ASM !

- Open problem :

Give a mathematical proof of criticality of ASM on Z2

Find the critical exponent.

Result  (Matter – N. ‘09) :

Uncountably many infinite 4-regular graphs with one 
end, of quadratic growth, with (rigorously proven) 
critical ASM.

- Another interesting problem: define ASM in infinite 
volume. Done for Zd (Jarai-Redig, Athreya-Jarai).







Γ6

Julia set of z2-1

…n→∞

Scaling limit 

called Limit space of G

(Nekrashevych)



Schreier graphs of self-similar groups

T=Td   - infinite d-ary tree;  V(Td) = X*, X={0,…d-1}.

G < Aut(T),   G finitely generated. 

G acts also on  ∂T = { ξ=x0x1x2….. }.



G<Aut(T), 
transitive on levels.  
G = <S>

Γn   = Sch (G, S, Xn)   

Vertices = Xn ,  
Edges = {(v,s(v)) | s in S}

|Vert(Γn)| = dn



Let   ξ=x0x1x2…   be a boundary point.

Γξ = Sch (G, S, StabG(ξ))    infinite (orbital) Schreier graph

(Γn ,x0…xn) → (Γξ , ξ) in the space of rooted graphs.

as n 



Study ASM on Schreier graphs of 
self-similar groups

Γξ an infinite Schreier graph, Γn finite Schreier graphs

Γn → Γξ as  n →∞.             ξ=x1x2….

θ a critical configuration on Γn . 

Destabilize it by adding a grain at x1…xn.

Study the asymptotics of the triggered avalanches,

under the stationary (uniform) distribution on Crit(Γn),

as  n →∞ (in large volume).    Try to define a limit process on Γξ .



Key example:    Basilica group    B=a,b

a=(b,id)e, b=(a,id)

Use classification of infinite Schreier graphs Γξ as function of 
boundary point ξ (D’Angeli – Donno – Matter - N. ’09).

Recall: For Basilica, Γξ has 1,2 or 4 ends. 

E1 = {rays which give graphs with 1 end}. 

E1 = {ξ = x1y1x2y2… both {xi} and {yi} have infinitely many 1’s}.

E1  is subset of  ∂T of measure 1.

E1 is partitioned into uncountably many isomorphism classes,

each of measure 0.



Sandpiles on Schreier graphs of Basilica (Matter-N. ’09)

Γξ a infinite Schreier graph, Γn finite Schreier graphs 
Γn→ Γξ as  n →∞.             ξ=x1x2….

- Pick a critical configuration uniformly at random;

- destabilize it by adding a grain at ξn=x1…xn .

- Study the behavior of the triggered avalanche.

Thm . 1) Γξ has 2 or 4 ends  non-critical behavior. 

2) For almost every ξ in E1, avalanches on 

(Γξn) exhibit critical behavior as n →∞ :

k-4/3   P [Mass(Aval) = k]   k-1  .  

For   ξ=1111…,      P*Mass(Aval) = k] ~ k-1 



To estimate the asymptotics of avalanches use 

Matter (‘09) : Exact solution of the Abelian Sand-Pile 
model on “cycle-tree” graphs (cacti).

Γ is a cycle-tree graph if it can be obtained from a tree

by replacing edges by cycles.

Remark. Many self-similar groups have Schreier

graphs cycle-trees   (Nekrashevych)


