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Spanning Forests on Z2

Consider the infinite graph Γ with vertex set Z2, and with nearest
neighbours connected by edges. A connected subgraph Γ′ ⊂ Γ without
loops is called a tree. A forest is a union of disjoint trees in Γ. A forest is
spanning if it contains all vertices of Γ. A spanning forest is essential if all
its trees are infinite.
If E is the set of edges of Γ then the set XF of all essential spanning
forests in Γ can be viewed as a closed shift-invariant subset of {0, 1}E . The
shift-action σ of Z2 on XF has topological entropy

h =

∫ 1

0

∫ 1

0
log
(
4− 2 cos 2πs − 2 cos 2πt

)
ds dt, (?)

and there is a unique shift-invariant probability measure µ on XF with
maximal entropy (Kasteleyn, 1961; Pemantle, 1991; Burton-Pemantle,
1993; Sheffield, 2006).
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Dimers

Consider the even shift-action σD of Z2 on the space XD of dimers which
consists of all infinite configurations of exact pairings of elements in Z2 of
the form

The topological entropy of σD is given by (?), and σD has a unique
shift-invariant measure of maximal entropy.
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The Two-Dimensional Sandpile Model: Finite Volume

Let Λ ⊂ Z2 be a nonempty finite set (Λ b Z2).

A configuration on Λ is an element of NΛ, where N = {1, 2, 3, . . . };
A configuration y ∈ NΛ is stable if yn ≤ 4 for every n ∈ Λ;
If y ∈ NΛ is unstable at a site n ∈ Λ (i.e., if yn > 4), then the site n
topples: y → y ′ = Tny , where y ′n = yn − 4, and y ′m = ym + 1 for
m ∈ Λ with ‖m− n‖ = 1. If yn ≤ 4 then Tny = y .

Lemma (Dhar, 1990). Put TΛ = limn→∞
∏

n∈Λ Tn. Then TΛ : NΛ −→ NΛ

is well-defined, and TΛ(y) is the stabilization of y ∈ NΛ.
We denote by An : y 7→ Any the addition of a single grain of sand at the
location n ∈ Λ to a configuration y ∈ NΛ, and we write An(y) for the
stabilization of Any .
Lemma (Dhar, 1990). The addition operators An, n ∈ Λ, commute.
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Addition

Addition of a grain of sand:

Under addition and stabilization the stable configurations on Λ form a
semigroup SΛ.

Klaus Schmidt Sandpiles and Harmonic Models 5/16



The group property

Definition: The set RΛ ⊂ SΛ of recurrent configurations is the unique
maximal subgroup of SΛ.

Description of RΛ: For every E ⊂ Λ and n ∈ E we denote by NE (n) the
number of neighbours of n in E . Put

PE = {v ∈ SΛ : vn > NE (n) for at least one n ∈ E}.

Then
RΛ =

⋂
E⊂Λ

PE ;

this is the characterization of RΛ by the burning algorithm.

Note that πΛ(RΛ′) ⊂ RΛ whenever Λ ⊂ Λ′ b Z2.

Are the group operations in RΛ and RΛ′ compatible? Unfortunately not!
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Neutral Elements Of RΛ

Chip-Firing and Rotor-Routing 9

properties of this configuration, such as the existence of the large square in the
center, remain unproved.

Figure 4. The identity element of the sandpile group of the L×L
square grid for different values of L, namely L = 128 (upper left),
198 (upper right), 243 (lower left), and 521 (lower right). The
color scheme is as follows: orange=0 chips, red=1 chip, green=2
chips, and blue=3 chips.

Figure 5 shows another example, the identity element for the 100 × 100 di-
rected torus. (That is, for each vertex (i, j) ∈ Z/100Z×Z/100Z, there are directed
edges from (i, j) to (i+1 mod 100, j) and to (i, j +1 mod 100), and we make (0, 0)
(the lower-left vertex) into a sink by deleting its two outgoing edges.)
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From Finite to Infinite Volume

Since πΛ(RΛ′) ⊂ RΛ whenever Λ ⊂ Λ′ b Z2 we can define a closed
shift-invariant subset

R∞ = {v ∈ {1, 2, 3, 4}Z2
: πΛ(v) ∈ RΛ for every Λ b Z2},

called the 2-dimensional critical sandpile model (Bak-Tang-Wiesenfeld,
1988; Dhar, 1990).

What happens to addition on RΛ as Λ↗ Z2? Is R∞ still a group?
If ’addition’ can be defined on R∞, what is the interaction between
addition and the shifts σnR∞ , n ∈ Z2?

The topological entropy of the shift action σR∞ on R∞ is given by (?) (cf.
Dhar, 2006).
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The Harmonic Model

Let αX be the shift-action of Z2 on the closed shift-invariant subgroup

X =
{

(xn) ∈ TZ2
: 4xn = xn+(1,0) + xn−(1,0) + xn+(0,1) + xn−(0,1) for all n

}
of TZ2 . Note that this is the linear recurrence relation on TZ2 defined by
the Laurent polynomial f = 4− u1 − u−1

1 − u2 − u−1
2 .

Theorem (Lind-S-Ward, 1990; Rudolph-S, 1995). αX is Bernoulli with
entropy (?).
The Haar measure λX is the unique shift-invariant measure of maximal
entropy on X (Lind-S-Ward, 1990).

The compact connected abelian group X (with Haar measure λX and
shift-action αX) is the 2-dimensional harmonic model.
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Connections between these models

All these models (spanning trees, dimers, sandpiles and the harmonic
model) have the same topological entropy, and at least three of them have
unique shift-invariant measures of maximal entropy which are Bernoulli
(Burton-Pemantle, Rudolph-S).

Are there any connections between these models?

The spanning tree model and the dimer model are ‘nicely’ isomorphic
(Burton-Pemantle).
For every finite set Λ ⊂ Z2 there is a natural bijection between
restrictions to Λ of the spanning tree model and the sandpile model,
but these maps are incompatible when Λ changes.
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Sandpiles Cover The Harmonic Model
Theorem (Verbitskiy-S, 2009). There exists a continuous group
homomorphism φ : `∞(Z2,Z) −→ X with the following properties.

φ ◦ σR∞ = αX ◦ φ.
φ(R∞) = X.
φ sends every shift-invariant measure µ of maximal entropy on R∞ to
the normalized Haar measure λX.

Conjecture: There exist a closed, α-invariant subgroup Z ⊂ X and a
continuous group homomorphism φ′ : `∞(Z2,Z) −→ X/Z with the
following properties.

h(αX/Z) = h(αX). X

φ′ ◦ σR∞ = αX/Z ◦ φ′. X

φ′(R∞) = X/Z. X

φ′ sends the unique? shift-invariant measure µ of maximal entropy on
R∞ to the Haar measure λX/Z.
φ′ is one-to-one µ-a.e. ?
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The Method Of Proof, Explained In A Simple Example

Consider the hyperbolic automorphism α = ( 0 1
1 1 ) of T2 = R2/Z2. We can

draw its expanding and contracting subspaces:

The intersections of these two subspaces are the homoclinic points of α.
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Maps Defined By Homoclinic Points

If x is one of these homoclinic points, then we can define a map
ξx : `∞(Z,Z) −→ T2 by

ξx (v) =
∑

n∈Z
vnα

−nx , v = (vn) ∈ `∞(Z,Z).

The map ξx is equivariant:
ξx ◦ σ = α ◦ ξx ,

where σ is the shift (σv)n = vn+1 on `∞(Z,Z).
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Symbolic Covers

In 1992–94 Vershik showed that the restriction of ξx to the two-sided
beta-shift Xβ ⊂ `∞(Z,Z) of the large eigenvalue β = 1+

√
5

2 of α is
surjective: ξx (Xβ) = T2.
Since Xβ is the Golden Mean shift (which is of finite type), it is a Markov
cover of α.
Subsequently it was shown that if one picks a good homoclinic point x of
α, then φx is almost one-to-one, where good means that the orbit
{αnx : n ∈ Z} generates the group ∆α(T2) of all homoclinic points of α.
Such a homoclinic point is called fundamental.

This is essentially how the map ψ : R∞ −→ X is constructed: we construct
homoclinic points of the harmonic model which decay sufficiently fast in
the sense that their coordinates are summable.
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L1-Homoclinic Points Of The Harmonic Model
Let ν be the uniform probability measure on {(±1, 0), (0,±1)} ⊂ Z2. The
random walk defined by ν is recurrent, hence µ =

∑
k≥0 ν

∗k is purely
infinite.
However, if we set µN({n}) =

∑N
k=0 ν

∗k({n}) for all n ∈ Z2, and if
µ′N({n}) = µN({n})− µN({0}), then µ′ = limN→∞ µ

′
N is a negative

σ-finite measure on Z2, called the Green’s function of ν.
Consider the formal power series F =

∑
n∈Z2 4µ′({n}) un with un = un1

1 un2
2

for all n = (n1, n2) ∈ Z2. Then F · f = f · F = 1, where
f = 4− u1 − u−1

1 − u2 − u−1
2 .

Define x∆ ∈ TZ2 by x∆
n = 4µ′({n}) (mod 1). The last paragraph shows

that x∆ ∈ X. If is easy to check that x∆ is not homoclinic. However, x∆

generates all homoclinic points of X: if y ∈ X is homoclinic, then
y = h(α)(x∆) for some h ∈ R2 := Z[u±1

1 , u±1
2 ] = Z(Z2), where

h(α) =
∑

n∈Z2 hnαn for every h =
∑

n∈Z2 hnun ∈ R2.
Theorem. A homoclinic point y ∈ X is L1-homoclinic if and only if
y = h(α)(x∆), where h lies in the ideal I = ((1− u1), (1− u2))3 ⊂ R2.
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The Sandpile Model As A Cover Of X

For every h ∈ I we obtain the L1-homoclinic point
xh = h(α)(x∆) ∈ X.
This homoclinic point defines a shift-equivariant homomorphism from
`∞(Z2,Z) onto X, whose restriction to R∞ is surjective and
entropy-preserving.
The covering map φ′ : R∞ −→ X/Z is obtained by combining all
these homomorphisms ξxh : R∞ −→ X, h ∈ I, into a single map.
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