Sandpiles and the Harmonic Model

Klaus Schmidt

University of Vienna and Erwin Schrödinger Institute

Graz, July 2009

Joint work with Evgeny Verbitskiy

Consider the infinite graph Γ with vertex set \mathbb{Z}^2 , and with nearest neighbours connected by edges. A connected subgraph $\Gamma' \subset \Gamma$ without loops is called a tree. A forest is a union of disjoint trees in Γ . A forest is spanning if it contains all vertices of Γ . A spanning forest is essential if all its trees are infinite.

If \mathcal{E} is the set of edges of Γ then the set X_F of all essential spanning forests in Γ can be viewed as a closed shift-invariant subset of $\{0,1\}^{\mathcal{E}}$. The shift-action σ of \mathbb{Z}^2 on X_F has topological entropy

$$h = \int_0^1 \int_0^1 \log \left(4 - 2\cos 2\pi s - 2\cos 2\pi t \right) \, ds \, dt, \qquad (\star)$$

and there is a unique shift-invariant probability measure μ on X_F with maximal entropy (Kasteleyn, 1961; Pemantle, 1991; Burton-Pemantle, 1993; Sheffield, 2006).

Dimers

Consider the even shift-action σ_D of \mathbb{Z}^2 on the space X_D of dimers which consists of all infinite configurations of exact pairings of elements in \mathbb{Z}^2 of the form

The topological entropy of σ_D is given by (*), and σ_D has a unique shift-invariant measure of maximal entropy.

The Two-Dimensional Sandpile Model: Finite Volume

Let $\Lambda \subset \mathbb{Z}^2$ be a nonempty finite set $(\Lambda \Subset \mathbb{Z}^2)$.

- A configuration on Λ is an element of \mathbb{N}^{Λ} , where $\mathbb{N} = \{1, 2, 3, \dots\}$;
- A configuration $y \in \mathbb{N}^{\Lambda}$ is stable if $y_{\mathbf{n}} \leq 4$ for every $\mathbf{n} \in \Lambda$;
- If $y \in \mathbb{N}^{\Lambda}$ is unstable at a site $\mathbf{n} \in \Lambda$ (i.e., if $y_{\mathbf{n}} > 4$), then the site \mathbf{n} topples: $y \to y' = T_{\mathbf{n}}y$, where $y'_{\mathbf{n}} = y_{\mathbf{n}} 4$, and $y'_{\mathbf{m}} = y_{\mathbf{m}} + 1$ for $\mathbf{m} \in \Lambda$ with $\|\mathbf{m} \mathbf{n}\| = 1$. If $y_{\mathbf{n}} \leq 4$ then $T_{\mathbf{n}}y = y$.

Lemma (Dhar, 1990). Put $\mathfrak{T}_{\Lambda} = \lim_{n \to \infty} \prod_{n \in \Lambda} \mathcal{T}_n$. Then $\mathfrak{T}_{\Lambda} \colon \mathbb{N}^{\Lambda} \longrightarrow \mathbb{N}^{\Lambda}$ is well-defined, and $\mathfrak{T}_{\Lambda}(y)$ is the stabilization of $y \in \mathbb{N}^{\Lambda}$.

We denote by $A_n: y \mapsto A_n y$ the addition of a single grain of sand at the location $\mathbf{n} \in \Lambda$ to a configuration $y \in \mathbb{N}^{\Lambda}$, and we write $\mathcal{A}_n(y)$ for the stabilization of $A_n y$.

Lemma (Dhar, 1990). The addition operators $\mathcal{A}_{\mathbf{n}}$, $\mathbf{n} \in \Lambda$, commute.

Addition of a grain of sand:

Under addition and stabilization the stable configurations on Λ form a semigroup $\$_{\Lambda}.$

Definition: The set $\mathcal{R}_{\Lambda} \subset S_{\Lambda}$ of recurrent configurations is the unique maximal subgroup of S_{Λ} .

Description of \Re_{Λ} : For every $E \subset \Lambda$ and $\mathbf{n} \in E$ we denote by $N_E(\mathbf{n})$ the number of neighbours of \mathbf{n} in E. Put

$$\mathfrak{P}_E = \{ v \in S_{\Lambda} : v_n > N_E(n) \text{ for at least one } n \in E \}.$$

Then

$$\mathfrak{R}_{\Lambda} = \bigcap_{E \subset \Lambda} \mathfrak{P}_{E};$$

this is the characterization of \mathcal{R}_{Λ} by the burning algorithm.

Note that $\pi_{\Lambda}(\mathcal{R}_{\Lambda'}) \subset \mathcal{R}_{\Lambda}$ whenever $\Lambda \subset \Lambda' \Subset \mathbb{Z}^2$.

Are the group operations in \mathcal{R}_{Λ} and $\mathcal{R}_{\Lambda'}$ compatible? Unfortunately not!

Neutral Elements Of \mathcal{R}_{Λ}

FIGURE 4. The identity element of the sandpile group of the $L \times L$ square grid for different values of L, namely L = 128 (upper left), 198 (upper right), 243 (lower left), and 521 (lower right). The color scheme is as follows: orange=0 chips, red=1 chip, green=2 chips, and blue=3 chips.

Since $\pi_{\Lambda}(\mathcal{R}_{\Lambda'}) \subset \mathcal{R}_{\Lambda}$ whenever $\Lambda \subset \Lambda' \Subset \mathbb{Z}^2$ we can define a closed shift-invariant subset

 $\mathfrak{R}_{\infty} = \{ \mathbf{v} \in \{1, 2, 3, 4\}^{\mathbb{Z}^2} : \pi_{\Lambda}(\mathbf{v}) \in \mathfrak{R}_{\Lambda} \text{ for every } \Lambda \Subset \mathbb{Z}^2 \},$

called the 2-dimensional critical sandpile model (Bak-Tang-Wiesenfeld, 1988; Dhar, 1990).

- What happens to addition on \Re_{Λ} as $\Lambda \nearrow \mathbb{Z}^2$? Is \Re_{∞} still a group?
- If 'addition' can be defined on \mathcal{R}_{∞} , what is the interaction between addition and the shifts $\sigma_{\mathcal{R}_{\infty}}^{\mathbf{n}}$, $\mathbf{n} \in \mathbb{Z}^2$?

The topological entropy of the shift action $\sigma_{\mathcal{R}_{\infty}}$ on \mathcal{R}_{∞} is given by (*) (cf. Dhar, 2006).

The Harmonic Model

Let $\alpha_{\mathfrak{X}}$ be the shift-action of \mathbb{Z}^2 on the closed shift-invariant subgroup $\mathfrak{X} = \left\{ (x_n) \in \mathbb{T}^{\mathbb{Z}^2} : 4x_n = x_{n+(1,0)} + x_{n-(1,0)} + x_{n+(0,1)} + x_{n-(0,1)} \text{ for all } n \right\}$

of $\mathbb{T}^{\mathbb{Z}^2}$. Note that this is the linear recurrence relation on $\mathbb{T}^{\mathbb{Z}^2}$ defined by the Laurent polynomial $f = 4 - u_1 - u_1^{-1} - u_2 - u_2^{-1}$.

Theorem (Lind-S-Ward, 1990; Rudolph-S, 1995). $\alpha_{\mathcal{X}}$ is Bernoulli with entropy (*).

The Haar measure $\lambda_{\mathcal{X}}$ is the unique shift-invariant measure of maximal entropy on \mathcal{X} (Lind-S-Ward, 1990).

The compact connected abelian group \mathcal{X} (with Haar measure $\lambda_{\mathcal{X}}$ and shift-action $\alpha_{\mathcal{X}}$) is the 2-dimensional harmonic model.

All these models (spanning trees, dimers, sandpiles and the harmonic model) have the same topological entropy, and at least three of them have unique shift-invariant measures of maximal entropy which are Bernoulli (Burton-Pemantle, Rudolph-S).

Are there any connections between these models?

- The spanning tree model and the dimer model are 'nicely' isomorphic (Burton-Pemantle).
- For every finite set Λ ⊂ Z² there is a natural bijection between restrictions to Λ of the spanning tree model and the sandpile model, but these maps are incompatible when Λ changes.

Sandpiles Cover The Harmonic Model

Theorem (Verbitskiy-S, 2009). There exists a continuous group homomorphism $\phi \colon \ell^{\infty}(\mathbb{Z}^2, \mathbb{Z}) \longrightarrow \mathfrak{X}$ with the following properties.

•
$$\phi \circ \sigma_{\mathcal{R}_{\infty}} = \alpha_{\mathcal{X}} \circ \phi.$$

- $\phi(\mathfrak{R}_{\infty}) = \mathfrak{X}.$
- ϕ sends every shift-invariant measure μ of maximal entropy on \Re_{∞} to the normalized Haar measure λ_{χ} .

Conjecture: There exist a closed, α -invariant subgroup $\mathfrak{Z} \subset \mathfrak{X}$ and a continuous group homomorphism $\phi' \colon \ell^{\infty}(\mathbb{Z}^2, \mathbb{Z}) \longrightarrow \mathfrak{X}/\mathfrak{Z}$ with the following properties.

- $h(\alpha_{\mathfrak{X}/\mathfrak{Z}}) = h(\alpha_{\mathfrak{X}})$.
- $\phi' \circ \sigma_{\mathcal{R}_{\infty}} = \alpha_{\mathfrak{X}/\mathcal{Z}} \circ \phi'$. \checkmark
- $\phi'(\mathfrak{R}_{\infty}) = \mathfrak{X}/\mathfrak{Z}$. \checkmark
- ϕ' sends the unique? shift-invariant measure μ of maximal entropy on \mathcal{R}_{∞} to the Haar measure $\lambda_{\mathcal{X}/\mathcal{Z}}$.
- ϕ' is one-to-one μ -a.e. ?

The Method Of Proof, Explained In A Simple Example

Consider the hyperbolic automorphism $\alpha = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ of $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$. We can draw its expanding and contracting subspaces:

The intersections of these two subspaces are the homoclinic points of α .

If x is one of these homoclinic points, then we can define a map $\xi_x \colon \ell^\infty(\mathbb{Z}, \mathbb{Z}) \longrightarrow \mathbb{T}^2$ by

$$\xi_x(\mathbf{v}) = \sum_{n \in \mathbb{Z}} \mathbf{v}_n \alpha^{-n} x, \ \mathbf{v} = (\mathbf{v}_n) \in \ell^\infty(\mathbb{Z}, \mathbb{Z}).$$

The map ξ_x is equivariant:

$$\xi_{x} \circ \sigma = \alpha \circ \xi_{x},$$

where σ is the shift $(\sigma v)_n = v_{n+1}$ on $\ell^{\infty}(\mathbb{Z},\mathbb{Z})$.

In 1992–94 Vershik showed that the restriction of ξ_x to the two-sided beta-shift $X_\beta \subset \ell^\infty(\mathbb{Z}, \mathbb{Z})$ of the large eigenvalue $\beta = \frac{1+\sqrt{5}}{2}$ of α is surjective: $\xi_x(X_\beta) = \mathbb{T}^2$.

Since X_{β} is the Golden Mean shift (which is of finite type), it is a Markov cover of α .

Subsequently it was shown that if one picks a good homoclinic point x of α , then ϕ_x is almost one-to-one, where good means that the orbit $\{\alpha^n x : n \in \mathbb{Z}\}$ generates the group $\Delta_{\alpha}(\mathbb{T}^2)$ of *all* homoclinic points of α . Such a homoclinic point is called fundamental.

This is essentially how the map $\psi \colon \mathcal{R}_{\infty} \longrightarrow \mathcal{X}$ is constructed: we construct homoclinic points of the harmonic model which decay sufficiently fast in the sense that their coordinates are summable.

L¹-Homoclinic Points Of The Harmonic Model

Let ν be the uniform probability measure on $\{(\pm 1, 0), (0, \pm 1)\} \subset \mathbb{Z}^2$. The random walk defined by ν is recurrent, hence $\mu = \sum_{k\geq 0} \nu^{*k}$ is purely infinite.

However, if we set $\mu_N(\{\mathbf{n}\}) = \sum_{k=0}^N \nu^{*k}(\{\mathbf{n}\})$ for all $\mathbf{n} \in \mathbb{Z}^2$, and if $\mu'_N(\{\mathbf{n}\}) = \mu_N(\{\mathbf{n}\}) - \mu_N(\{\mathbf{0}\})$, then $\mu' = \lim_{N \to \infty} \mu'_N$ is a negative σ -finite measure on \mathbb{Z}^2 , called the Green's function of ν .

Consider the formal power series $F = \sum_{\mathbf{n} \in \mathbb{Z}^2} 4\mu'(\{\mathbf{n}\}) u^{\mathbf{n}}$ with $u^{\mathbf{n}} = u_1^{n_1} u_2^{n_2}$ for all $\mathbf{n} = (n_1, n_2) \in \mathbb{Z}^2$. Then $F \cdot f = f \cdot F = 1$, where $f = 4 - u_1 - u_1^{-1} - u_2 - u_2^{-1}$.

Define $x^{\Delta} \in \mathbb{T}^{\mathbb{Z}^2}$ by $x_{\mathbf{n}}^{\Delta} = 4\mu'(\{\mathbf{n}\}) \pmod{1}$. The last paragraph shows that $x^{\Delta} \in \mathcal{X}$. If is easy to check that x^{Δ} is *not* homoclinic. However, x^{Δ} generates *all* homoclinic points of \mathcal{X} : if $y \in \mathcal{X}$ is homoclinic, then $y = h(\alpha)(x^{\Delta})$ for some $h \in R_2 := \mathbb{Z}[u_1^{\pm 1}, u_2^{\pm 1}] = \mathbb{Z}(\mathbb{Z}^2)$, where $h(\alpha) = \sum_{\mathbf{n} \in \mathbb{Z}^2} h_{\mathbf{n}} \alpha^{\mathbf{n}}$ for every $h = \sum_{\mathbf{n} \in \mathbb{Z}^2} h_{\mathbf{n}} u^{\mathbf{n}} \in R_2$.

Theorem. A homoclinic point $y \in \mathcal{X}$ is L^1 -homoclinic if and only if $y = h(\alpha)(x^{\Delta})$, where *h* lies in the ideal $I = ((1 - u_1), (1 - u_2))^3 \subset R_2$.

- For every $h \in I$ we obtain the L^1 -homoclinic point $x_h = h(\alpha)(x^{\Delta}) \in \mathcal{X}.$
- This homoclinic point defines a shift-equivariant homomorphism from $\ell^{\infty}(\mathbb{Z}^2,\mathbb{Z})$ onto \mathfrak{X} , whose restriction to \mathcal{R}_{∞} is surjective and entropy-preserving.
- The covering map $\phi' \colon \mathcal{R}_{\infty} \longrightarrow \mathcal{X}/\mathcal{Z}$ is obtained by combining all these homomorphisms $\xi_{x_h} \colon \mathcal{R}_{\infty} \longrightarrow \mathcal{X}, h \in I$, into a single map.