

Diskrete Stochastik und Informationstheorie – 19 Mar 2014

Exercise 1. A 6-sided die with values $\Omega = \{1, 2, 3, 4, 5, 6\}$ is thrown and the upside facet is read.

- (a) What is the minimal σ -algebra that contains the information if the value of the die is even or odd?
- (b) What is the minimal σ -algebra that contains the information if the value of the die is either in $\{1, 2\}$ or in $\{3, 4\}$ or in $\{5, 6\}$?
- (c) What is the σ -algebra that allows you to determine the value of the die?

Exercise 2. Is $\{\emptyset, \{b\}, \{a, c\}, \{d, b\}, \{a, b, c, d\}\}$ a σ -algebra over $\Omega = \{a, b, c, d\}$? If not, which elements are missing? What is the "information" described by this σ -algebra?

Exercise 3. How many different σ -algebras can be constructed from the basic events $\Omega = \{\text{red}, \text{blue}, \text{green}\}$? How many of them are truly structurally different (non-isomorphic)?

Exercise 4. Karl has two kids. Let \mathcal{A} be the minimal σ -algebra that describes whether each of the two kids is a boy or a girl.

- (a) Describe the corresponding probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and its probability distribution.
- (b) Assume Karl's firstborn child is a girl. What is the chance that the second is a boy?
- (c) Assume at least one of the two kids is a girl. What is the chance that the other is a girl as well?

Exercise 5. A fair die is rolled first. It gives a random number k from $\{1, 2, 3, 4, 5, 6\}$. Next, a fair coin is tossed k times.

- (a) Assume we know that all coins show heads, what is the probability that the score of the die was equal to 4?
- (b) Are the events "k is even" and "all coins show heads" independent?