



## Diskrete Stochastik und Informationstheorie – 2 Apr 2014

**Exercise 11.** (Law of total expectation) Let X be a discrete random variable satisfying  $\mathbb{E}(|X|) < \infty$  and Y be another random variable taking values in  $\{y_1, \ldots, y_n\}$ , both over the same probability space. Show that

$$\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(X|Y = y_i) \cdot \mathbb{P}(Y = y_i).$$

**Exercise 12.** Let X be a discrete random variable taking values in  $\mathbb{N}$ . Show that  $\mathbb{E}(X) < \infty$  if and only if  $\sum_{n>1} \mathbb{P}[X > n] < \infty$ .

**Exercise 13.** Let  $(X_n)_{n\geq 1}$  be a sequence of nonnegative discrete random variables. Assume  $\mathbb{E}(\sum_{n=1}^{\infty} X_n) < \infty$ . Show that  $\lim_{n\to\infty} X_n = 0$  almost surely.

(Hint: Set  $Y = \sum_{n=1}^{\infty} X_n$  and use the previous example and the Borel-Cantelli lemma.)

**Exercise 14.** Consider the following two-stage experiment: We first throw a die. If the result is 1, we draw a ball from urn A; otherwise, we draw from urn B. Urn A contains 2 black balls and 3 white balls; urn B contains 3 red balls and 4 blue balls. Let X be the color of the drawn ball. Calculate the entropy of X.

**Exercise 15.** A fair coin is flipped until the first head occurs. Let X denote the number of flips required.

(a) Calculate the entropy H(X) in bits.

(Hint: Think about  $\sum_{n=0}^{\infty} x^n = 1/(1-x)$  and deriving both sides of this equation to evaluate the series occurring in the calculation.)

(b) A random variable X is drawn according to this distribution. Find an "efficient" sequence of yes-no questions to determine the value of X. Compare H(X) to the expected number of questions required to determine the value of X.