



Diskrete Stochastik und Informationstheorie – 28 May 2014

Exercise 30. Let

$$X = \begin{cases} 1 & \text{with probability } \frac{1}{2}, \\ 2 & \text{with probability } \frac{1}{3}, \\ 3 & \text{with probability } \frac{1}{6}. \end{cases}$$

Let X_1, X_2, \ldots be drawn independently and identically distributed (i.i.d.) according to the distribution of X. Find the limiting behavior of $(X_1 \cdot X_2 \cdots X_n)^{1/n}$ as $n \to \infty$. *Hint*: How could the target limit be transformed/rewritten to apply the ergodic theorem or

Hint: How could the target limit be transformed/rewritten to apply the ergodic theorem or the law of large numbers?

Exercise 31. Let X be the outcome of a biased coin flip with $\mathcal{X} = \{0, 1\}$, where $\mathbb{P}[X = 1] = p > \frac{1}{2}$ and $\mathbb{P}[X = 0] = 1 - p$. Let $(X_i)_{1 \le i \le n}$ be an i.i.d. sequence of such coin flips, and denote a particular outcome by $x^{(n)} = (x_1, \ldots, x_n) \in \mathcal{X}^n$. Define the typical set $A_{\varepsilon}^{(n)}$ by

$$A_{\varepsilon}^{(n)} = \left\{ (x_1, \dots, x_n) \in \mathcal{X}^n : \left| -\frac{1}{n} \log p_n(x_1, \dots, x_n) - H(X) \right| \le \varepsilon \right\}.$$

(a) Show that $x^{(n)} \in A_{\varepsilon}^{(n)}$ if and only if

$$p - \frac{\varepsilon}{\left|\log \frac{1-p}{p}\right|} \le \frac{r}{n} \le p + \frac{\varepsilon}{\left|\log \frac{1-p}{p}\right|},$$

where r is the number of "1"s in the string $x^{(n)}$.

- (b) Calculate $\mathbb{P}(A_{\varepsilon}^{(n)})$ for p = 0.7, $\varepsilon = 10^{-2}$ and n = 100, n = 1000 and n = 10000.
- (c) Calculate $\mathbb{P}(A_{\varepsilon}^{(n)})$ for p = 0.99, $\varepsilon = 10^{-2}$ and n = 100. How many strings are there in $A_{\varepsilon}^{(n)}$? Show that it is possible to give a coding for elements in \mathcal{X}^n such that the expected string length is $\mathbb{E}(\ell(x^{(n)})) \leq 68$ instead of the expected 100 bits for trivial binary coding.
- (d) How many strings are there in $A_{\varepsilon}^{(n)}$ for $p = \frac{1}{2}$ and arbitrary ε, n ? Does typical set encoding make sense in this case?
- (e) Let $p > \frac{3}{4}$ and $\varepsilon = \frac{1}{n}$. Calculate $\lim_{n \to \infty} \mathbb{P}(A_{\varepsilon}^{(n)})$. *Hint*: Use Stirling's formula to approximate the factorials.

Exercise 32. Let X be a random variable with values in $\mathcal{X} = \{1, 2, ..., m\}$ and distribution p(x), and let $(X_i)_{i\geq 0}$ be i.i.d. random variables with the same distribution. Denote $\mu = \mathbb{E}(X)$ and $H = H(X) = -\sum p(x) \log p(x)$. For $\varepsilon > 0$, consider the sets

$$A^{(n)} = \left\{ (x_1, \dots, x_n) \in \mathcal{X}^n : \left| -\frac{1}{n} \log p_n(x_1, \dots, x_n) - H \right| \le \varepsilon \right\}.$$
$$B^{(n)} = \left\{ (x_1, \dots, x_n) \in \mathcal{X}^n : \left| \frac{1}{n} \sum_{i=1}^n x_i - \mu \right| \le \varepsilon \right\}.$$

(a) Does $\mathbb{P}[(X_1, \dots, X_n) \in A^{(n)}] \to 1$ for $n \to \infty$?

- (b) Does $\mathbb{P}[(X_1, \dots, X_n) \in A^{(n)} \cap B^{(n)}] \to 1 \text{ for } n \to \infty$?
- (c) Show that $|A^{(n)} \cap B^{(n)}| \leq 2^{n(H+\varepsilon)}$ for all n.
- (d) Show that $|A^{(n)} \cap B^{(n)}| \ge (\frac{1}{2})2^{n(H-\varepsilon)}$ for all *n* sufficiently large.