

Diskrete Stochastik und Informationstheorie – 18 Jun 2014

Exercise 41 (Shannon code with respect to wrong distribution). Suppose that we encode X using a Shannon code with lengths $\ell(C(x)) = \lceil -\log q(x) \rceil$ assuming the distribution q of X. Show that if the real distribution of X is p, we have:

$$H(p) + D(p || q) \le \mathbb{E}_p(\ell(C(X))) < H(p) + D(p || q) + 1.$$

Exercise 42 (Relative entropy is the cost of miscoding). Let the random variable X take values in $\{1, 2, 3, 4, 5\}$. Consider two possible distributions p and q of X, as well as two binary encodings C_1 and C_2 :

x	p(x)	q(x)	$C_1(x)$	$C_2(x)$
1	1/2	1/2	0	0
2	1/4	1/8	10	100
3	1/8	1/8	110	101
4	$^{1}/_{16}$	1/8	1110	110
5	1/16	1/8	1111	111

- (a) Calculate H(p) and show that C_1 is optimal for p. Same for q and C_2 .
- (b) Calculate $D(p \parallel q)$ and quantify the loss when encoding with C_2 under p. Same for $D(q \parallel p)$ and encoding with C_1 under q.

Exercise 43 (Optimal compression of a Markov source). Consider the homogeneous Markov chain $X = (X_n)_{n \in \mathbb{N}}$ on the state space $S = \{s_1, s_2, s_3\}$ with transition matrix

$$P = \begin{pmatrix} 1/2 & 1/2 & 0\\ 1/4 & 1/2 & 1/4\\ 1/4 & 1/4 & 1/2 \end{pmatrix} \,.$$

- (a) Design three binary encodings C_1, C_2 and C_3 of S such that the Markov process X can be sent with maximal compression when for each state, the code is selected depending on the previous state (code C_i if the previous state was s_i).
- (b) What is the average message length of the next symbol conditioned on the current symbol $X_n = s_i$ for i = 1, 2, 3?
- (c) What is the unconditional average number of bits per source symbol? Relate this to the entropy of the Markov chain.

Exercise 44 (Typical sets for Markov chains). A discrete source emits a sequence (X_n) of bits that follow a stationary Markov chain with the transition matrix

$$P = \begin{pmatrix} 0.9 & 0.1\\ 0.5 & 0.5 \end{pmatrix}.$$

- (a) Find the entropy rate of X_n .
- (b) How many "1"s will you typically observe in a sequence of 100 digits?
- (c) Give bounds on the size of the typical sets $A_{\varepsilon}^{(n)}$.
- (d) Use Markov's inequality to bound the probability of observing a source sequence that contains more than k "1"s. Use this bound to find the value k such that the probability of observing more than k times a 1 is less than $\varepsilon = 0.001$.