

Diskrete Stochastik und Informationstheorie – 25 Jun 2014

Exercise 45. Consider the discrete channel $Y = X + Z \mod 11$, where $X \in \mathcal{X} = \{0, 1, \dots, 10\}$ and Z is a random noise independent of X with $\mathbb{P}[Z = 1] = \mathbb{P}[Z = 2] = \mathbb{P}[Z = 3] = \frac{1}{3}$.

- (a) What does the transition matrix of the channel look like?
- (b) Show that $I(X;Y) \le \log_2 \frac{|\mathcal{X}|}{3}$.
- (c) Give the probability distribution of X that maximizes I(X;Y) to obtain the channel capacity. What is the corresponding distribution of Y?

Exercise 46. Let $\mathcal{X} = \mathcal{Y} = \{0, 1\}$. The transition probabilities are given by

$$p(0|0) = 1$$
, $p(1|0) = 0$, $p(0|1) = p(1|1) = \frac{1}{2}$

- (a) Is this channel weakly symmetric?
- (b) Show that if $\mathbb{P}[X=1] = q$, then I(X;Y) is given by $I(X;Y) = H(\frac{q}{2}, 1-\frac{q}{2}) q$.
- (c) Find the channel capacity.

Hint: Show that $q^* = \frac{2}{5}$ maximizes the above function (by determining the roots of the function's derivation).

Exercise 47. Consider two independent discrete channels $(\mathcal{X}_1, \mathcal{P}_1, \mathcal{Y}_1)$ and $(\mathcal{X}_2, \mathcal{P}_2, \mathcal{Y}_2)$. We construct a new channel \mathcal{C} from \mathcal{C}_1 and \mathcal{C}_2 such that $x_1 \in \mathcal{X}_1$ and $x_2 \in \mathcal{X}_2$ will be transmitted in parallel (at the same time): x_1 is mapped to some $y_1 \in \mathcal{Y}_1$ and x_2 is mapped to some $y_2 \in \mathcal{Y}_2$. Show that the capacity of this joint channel is

$$\operatorname{Cap}(\mathcal{C}) = \operatorname{Cap}(\mathcal{C}_1) + \operatorname{Cap}(\mathcal{C}_2).$$

Exercise 48. Let X and Y be two random variables with the following joint distribution:

$$\begin{array}{c|ccc} Y \backslash X & 0 & 1 \\ \hline a & 1/2 & 1/6 \\ b & 1/12 & 1/4 \end{array}$$

Suppose X is the input and Y the output of a channel, and only Y can be observed. We want to find a good estimator $\hat{X}(y)$ of the value x. The estimator can be probabilistic, i.e., an observed value $y \in \{a, b\}$ is mapped to an estimate $\hat{x} \in \{0, 1\}$ with probability $p_{y,\hat{x}}$.

- (a) Argue that (X, Y, \hat{X}) is a Markov triple if \hat{X} is estimated as above.
- (b) Why is the corollary of Fano's inequality useless for bounding $\mathbb{P}[\hat{X}(Y) \neq X] = p_{\text{error}}$ in this example?
- (c) Show that the best estimator of x (minimizing $\mathbb{P}[\hat{X}(Y) \neq X]$) is

$$\hat{X}(y) = \begin{cases} 0 & y = a \\ 1 & y = b \end{cases}$$

Hint: Use the Markov property of $X \mapsto Y \mapsto \hat{X}$ in

$$\mathbb{P}[\hat{X}(Y) \neq X] = \sum_{\substack{\hat{x}, x, y \\ \hat{x} \neq x}} \mathbb{P}[\hat{X} = \hat{x}, Y = y, X = x].$$