K-divisible Non Crossing Partitions and Free Probability

Octavio Arizmendi Echegaray¹

¹University of Saarbrucken

Bialgebras in Free Probability, February 2011

Octavio Arizmendi Echegaray

Outline

1 Non Crossing Partitions

- Definitions.
- NC(n) as a lattice.
- K-divisible Non Crossing Partitions.

Free Probability

- Basic Definitions
- Free Cumulants
- K-divisible elements
- Free Convolutions

3 Further Development

- Convolution with functions other than zeta.
- Anular Partitions and Second Order Freeness

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions

■▶ ■|= のへへ

Outline

1 Non Crossing Partitions

Definitions.

- NC(n) as a lattice.
- K-divisible Non Crossing Partitions.

2 Free Probability

- Basic Definitions
- Free Cumulants
- K-divisible elements
- Free Convolutions

3 Further Development

- Convolution with functions other than zeta.
- Anular Partitions and Second Order Freeness

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

ヘロト (同) (ヨト (ヨト)目目 うので

- We call $\pi = \{V_1, \ldots, V_r\}$ a partition of the set S if and only if V_i $(1 \le i \le r)$ are pairwise disjoint, non-void subsets of S, s.t $V_1 \cup \cdots \cup V_r = S$. We call V_1, \cdots, V_r the blocks of π .
- The set of all partitions of S is denoted by P(S). When $S = \{1, ..., n\}$ we will talk about P(n).
- A partition $\pi = \{V_1, \ldots, V_r\}$ is called **crossing** if there are V_i, V_j with $j \neq i$ and a < b < c < d such that $a, c \in V_i$ and $b, c \in V_j$.
- If is not crossing, then it is called non-crossing. The set of non-crossing partitions will be denoted by NC(S). When S = {1,...,n} then we will talk about NC(n).

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

ヘロト (同) (ヨト (ヨト)目目 うので

- We call $\pi = \{V_1, \ldots, V_r\}$ a partition of the set S if and only if V_i $(1 \le i \le r)$ are pairwise disjoint, non-void subsets of S, s.t $V_1 \cup \cdots \cup V_r = S$. We call V_1, \cdots, V_r the blocks of π .
- The set of all partitions of S is denoted by P(S). When $S = \{1, ..., n\}$ we will talk about P(n).
- A partition $\pi = \{V_1, \ldots, V_r\}$ is called **crossing** if there are V_i, V_j with $j \neq i$ and a < b < c < d such that $a, c \in V_i$ and $b, c \in V_j$.
- If is not crossing, then it is called non-crossing. The set of non-crossing partitions will be denoted by NC(S). When S = {1,...,n} then we will talk about NC(n).

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

ヘロト (同) (ヨト (ヨト)目目 うので

- We call $\pi = \{V_1, \ldots, V_r\}$ a partition of the set S if and only if V_i $(1 \le i \le r)$ are pairwise disjoint, non-void subsets of S, s.t $V_1 \cup \cdots \cup V_r = S$. We call V_1, \cdots, V_r the blocks of π .
- The set of all partitions of S is denoted by P(S). When $S = \{1, ..., n\}$ we will talk about P(n).
- A partition $\pi = \{V_1, \dots, V_r\}$ is called **crossing** if there are V_i, V_j with $j \neq i$ and a < b < c < d such that $a, c \in V_i$ and $b, c \in V_j$.
- If is not crossing, then it is called non-crossing. The set of non-crossing partitions will be denoted by NC(S). When S = {1,...,n} then we will talk about NC(n).

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

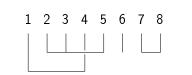
- We call $\pi = \{V_1, \ldots, V_r\}$ a partition of the set S if and only if V_i $(1 \le i \le r)$ are pairwise disjoint, non-void subsets of S, s.t $V_1 \cup \cdots \cup V_r = S$. We call V_1, \cdots, V_r the blocks of π .
- The set of all partitions of S is denoted by P(S). When $S = \{1, ..., n\}$ we will talk about P(n).
- A partition $\pi = \{V_1, \ldots, V_r\}$ is called **crossing** if there are V_i, V_j with $j \neq i$ and a < b < c < d such that $a, c \in V_i$ and $b, c \in V_j$.
- If is not crossing, then it is called non-crossing. The set of non-crossing partitions will be denoted by NC(S). When S = {1,...,n} then we will talk about NC(n).

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Non-Crossing Partitions Linear Representation

Crossing Partition $\pi = \{\{1,4\},\{2,3,5\},\{6\},\{7,8\}\},\$



Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Non-Crossing Partitions Linear Representation

Non-crossing partition

$$\pi = \{\{1,5\},\{2,3,4\},\{6\},\{7,8\}\},\$$

$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$$

$$| \ \Box \sqcup \sqcup \sqcup \qquad | \ | \ \Box \sqcup$$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions

< 一型

ELE DOG

Non-Crossing Partitions Circular Representation

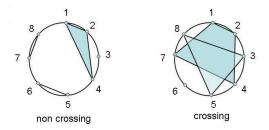


Figure: Circular Representation

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions

■▶ ■|= のへへ

∃ >

Outline

1 Non Crossing Partitions

- Definitions.
- NC(n) as a lattice.
- K-divisible Non Crossing Partitions.

2 Free Probability

- Basic Definitions
- Free Cumulants
- K-divisible elements
- Free Convolutions

3 Further Development

- Convolution with functions other than zeta.
- Anular Partitions and Second Order Freeness

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲母▼ ▲目▼ ▲日▼ 目目 ろく?

Non-Crossing Partitions NC(n) as a lattice.

We define the partial order $(P(n), \leq)$ as follows: Let π and σ be two partitions in P(n), we say that $\pi \leq \sigma$ if every block $V \in \pi$ is contained completely in some block $W \in \sigma$

The partial order $(P(n), \leq)$ induces a lattice structure in P(n).

We consider the partial order $(NC(n), \leq)$ seeing NC(n) as a subposet in P(n)

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

・ロト ・同ト ・ヨト ・ヨト ・のへつ

Non-Crossing Partitions NC(n) as a lattice.

We define the partial order $(P(n), \leq)$ as follows: Let π and σ be two partitions in P(n), we say that $\pi \leq \sigma$ if every block $V \in \pi$ is contained completely in some block $W \in \sigma$

The partial order $(P(n), \leq)$ induces a lattice structure in P(n).

We consider the partial order $(NC(n), \leq)$ seeing NC(n) as a subposet in P(n)

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

・ロト ・同ト ・ヨト ・ヨト ・のへつ

Non-Crossing Partitions NC(n) as a lattice.

We define the partial order $(P(n), \leq)$ as follows: Let π and σ be two partitions in P(n), we say that $\pi \leq \sigma$ if every block $V \in \pi$ is contained completely in some block $W \in \sigma$

The partial order $(P(n), \leq)$ induces a lattice structure in P(n).

We consider the partial order $(NC(n), \leq)$ seeing NC(n) as a subposet in P(n)

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

ヘロト (同) (ヨト (ヨト (同) への

Non-Crossing Partitions NC(n) as a lattice.

We define the partial order $(P(n), \leq)$ as follows: Let π and σ be two partitions in P(n), we say that $\pi \leq \sigma$ if every block $V \in \pi$ is contained completely in some block $W \in \sigma$

The partial order $(P(n), \leq)$ induces a lattice structure in P(n).

We consider the partial order $(NC(n), \leq)$ seeing NC(n) as a subposet in P(n)

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Non-Crossing Partitions Combinatorial Convolution.

Let P be a finite partially ordered. For functions $f: P \to \mathbb{C}$ and $G: P^{(2)} \to \mathbb{C}$ the convolution $f * G : P \to \mathbb{C}$ is the function defined by

$$(f * G)(\sigma) = \sum_{\rho \in P, \rho \in P} f(\rho)G(\rho, \sigma)$$

The zeta function on $P, \zeta: P^{(2)} \rightarrow \mathbb{C}$ is defined by

$$\zeta(\pi,\sigma) = \begin{cases} 1 & \pi \leq \sigma \\ 0 & \pi \nleq \sigma \end{cases}$$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Non-Crossing Partitions Combinatorial Convolution.

Let P be a finite partially ordered. For functions $f: P \to \mathbb{C}$ and $G: P^{(2)} \to \mathbb{C}$ the convolution $f * G : P \to \mathbb{C}$ is the function defined by

$$(f * G)(\sigma) = \sum_{\rho \in P, \rho \in P} f(\rho)G(\rho, \sigma)$$

The zeta function on P, $\zeta: P^{(2)} \rightarrow \mathbb{C}$ is defined by

$$\zeta(\pi,\sigma) = \begin{cases} 1 & \pi \leq \sigma \\ 0 & \pi \nleq \sigma \end{cases}$$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲母▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わえゆ

Non-Crossing Partitions Multiplicative families

Let $(\alpha)_{n>0}$ be a sequence of complex numbers.

Define $f_n : NC(n) \to \mathbb{C}, n \ge 1$, by the following formula:

 $f_n(\pi) = lpha_{|V_1|} \cdots lpha_{|V_r|}$

where $\pi = \{V_1, \ldots, V_r\} \in NC(n)$.

 $(f_n)_{n\geq 1}$ is called the **multiplicative family of functions** on *NC* determined by $(\alpha_n)_{n\geq 1}$.

We will use the notation

$$\alpha_{\pi} := f_n(\pi) = \alpha_{|V_1|} \cdots \alpha_{|V_r|}$$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Non-Crossing Partitions Multiplicative families

Let $(\alpha)_{n>0}$ be a sequence of complex numbers.

Define $f_n: NC(n) \to \mathbb{C}, n \ge 1$, by the following formula:

 $f_n(\pi) = \alpha_{|V_1|} \cdots \alpha_{|V_r|}$

where $\pi = \{V_1, \ldots, V_r\} \in NC(n)$.

 $(f_n)_{n\geq 1}$ is called the **multiplicative family of functions** on *NC* determined by $(\alpha_n)_{n\geq 1}$.

We will use the notation

$$\alpha_{\pi} := f_n(\pi) = \alpha_{|V_1|} \cdots \alpha_{|V_r|}$$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Non-Crossing Partitions Multiplicative families

Let $(\alpha)_{n>0}$ be a sequence of complex numbers.

Define $f_n : NC(n) \to \mathbb{C}, n \ge 1$, by the following formula:

 $f_n(\pi) = \alpha_{|V_1|} \cdots \alpha_{|V_r|}$

where $\pi = \{V_1, \ldots, V_r\} \in NC(n)$.

 $(f_n)_{n\geq 1}$ is called the multiplicative family of functions on NC determined by $(\alpha_n)_{n\geq 1}$.

We will use the notation

$$\alpha_{\pi} := f_n(\pi) = \alpha_{|V_1|} \cdots \alpha_{|V_r|}$$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

(日本) (日本) (日本) (日本)

Non-Crossing Partitions Dilated sequences

Let $(a_n)_{n\geq 1}$ be a sequence of complex numbers. We call $\binom{(k)}{n}_{n\geq 1}$ the k-dilation of $(a_n)_{n\geq 1}$ to be the sequence s. t.

Quick example: If $(a_n)_{n\geq 1} = \{1, 2, 3, 4, 5, 6, ...\}$ then: $(a_n^{(2)})_{n\geq 1} = \{0, 1, 0, 2, 0, 3, 0, 4, 0, 5...\}$ $(a_n^{(3)})_{n\geq 1} = \{0, 0, 1, 0, 0, 2, 0, 0, 3, ...\}$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▶ ★ Ξ ▶ ★ Ξ ▶ Ξ Ξ

Non-Crossing Partitions Dilated sequences

Let $(a_n)_{n\geq 1}$ be a sequence of complex numbers. We call $\binom{(k)}{n}_{n\geq 1}$ the k-dilation of $(a_n)_{n\geq 1}$ to be the sequence s. t.

•
$$a_{nk}^{(k)} = a_n$$

• $a_s^{(k)} = 0$ if k does not divide s.

Quick example: If $(a_n)_{n\geq 1} = \{1, 2, 3, 4, 5, 6, ...\}$ then: $(a_n^{(2)})_{n\geq 1} = \{0, 1, 0, 2, 0, 3, 0, 4, 0, 5...\}$ $(a_n^{(3)})_{n\geq 1} = \{0, 0, 1, 0, 0, 2, 0, 0, 3, ...\}$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▶ ▲ 프 ▶ ▲ 프 ▶ . 프 ㅋ

Non-Crossing Partitions Dilated sequences

Let $(a_n)_{n\geq 1}$ be a sequence of complex numbers. We call $\binom{(k)}{n}_{n\geq 1}$ the k-dilation of $(a_n)_{n\geq 1}$ to be the sequence s. t.

•
$$a_{nk}^{(k)} = a_n$$

• $a_s^{(k)} = 0$ if k does not divide s.

Quick example: If $(a_n)_{n\geq 1} = \{1,2,3,4,5,6,...\}$ then: $(a_n^{(2)})_{n\geq 1} = \{0,1,0,2,0,3,0,4,0,5...\}$ $(a_n^{(3)})_{n\geq 1} = \{0,0,1,0,0,2,0,0,3,...\}$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲母▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わえゆ

Non-Crossing Partitions Dilated sequences

Let $(a_n)_{n\geq 1}$ be a sequence of complex numbers. We call $\binom{k}{n}_{n\geq 1}$ the k-dilation of $(a_n)_{n\geq 1}$ to be the sequence s. t.

•
$$a_{nk}^{(k)} = a_n$$

• $a_s^{(k)} = 0$ if k does not divide s.

Quick example: If
$$(a_n)_{n\geq 1} = \{1,2,3,4,5,6,...\}$$
 then:
 $(a_n^{(2)})_{n\geq 1} = \{0,1,0,2,0,3,0,4,0,5...\}$
 $(a_n^{(3)})_{n\geq 1} = \{0,0,1,0,0,2,0,0,3,...\}$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

Non-Crossing Partitions Multiplicative families

What is the relation between

$$f * \zeta * \cdots * \zeta$$

and

$$f^{(k)} * \zeta$$

when f belongs to a multiplicative family on NC?

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲母▼ ▲目▼ ▲日▼ 目目 ろく?

Non-Crossing Partitions Main Result

Theorem (A.)

The following statements are equivalent:

1) The family $(g_n)_{n\geq 1}$ is the result of applying k times the zeta function to $(f_n)_{n\geq 1}$. $(g = f * \zeta * \cdots * \zeta$)

2) The family $(g_n^{(k)})_{n\geq 1}$ is the result of applying the zeta function to $(f_n^{(k)})_{n\geq 1}$. $(g^{(k)} = f^{(k)} * \zeta)$.

Remark

This property is not true for P(n) or I(n)!!

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Non-Crossing Partitions Main Result

Theorem (A.)

The following statements are equivalent:

1)The family $(g_n)_{n\geq 1}$ is the result of applying k times the zeta function to $(f_n)_{n\geq 1}$. $(g = f * \zeta * \cdots * \zeta$)

2) The family $(g_n^{(k)})_{n\geq 1}$ is the result of applying the zeta function to $(f_n^{(k)})_{n\geq 1}$. $(g^{(k)} = f^{(k)} * \zeta)$.

Remark

This property is not true for P(n) or I(n)!!!

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

Non-Crossing Partitions k-divisibles NC.

Example

Let
$$\{a_n\}_{n>0} = \{1, 0, ...\}$$
, $b = a * \zeta$. and $c = b * \zeta * \zeta$. Then

$$b_n = \sum_{\pi \in NC(n)} a_{\pi} = a_{||\dots|} = 1$$
 $c_n = \sum_{\pi \in NC(n)} b_{\pi} = \sum_{\pi \in NC(n)} 1 = \# NC(n)$

$$(a_n^{(2)})_{n>0} = \{0, 1, 0, ...\}$$
 and let $d = a^{(2)} * \zeta$. Then

$$d_{2n} = \sum_{\pi \in NC(2n)} a_{\pi}^{(2)} = \sum_{\pi \in NC_2(2n)} 1 = \#\{\pi \in NC(2n) \mid \pi \text{ pair}\}$$

By the last theorem $d_n = c_n^{(2)}$ or $d_{2n} = c_n$.

200

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

■▶ ■|= のへへ

Outline

1 Non Crossing Partitions

- Definitions.
- NC(n) as a lattice.
- K-divisible Non Crossing Partitions.

2 Free Probability

- Basic Definitions
- Free Cumulants
- K-divisible elements
- Free Convolutions

3 Further Development

- Convolution with functions other than zeta.
- Anular Partitions and Second Order Freeness

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲冊▶ ▲目▶ ▲目▶ 三日日 ののの

- A partition $\pi = \{V_1, \dots, V_r\}$ is called *k*-equal if $V_i = k$ for all *i*.
- A partition $\pi = \{V_1, \dots, V_r\}$ is called k-divisible if $k \mid V_i$ for all *i*.
- We will denote the set of k-divisible non crossing partitions of kn elements by NC^(k)(n).
- A k-multichain of a POSET P is a sequence $x_1 \le x_2 \le x_3 \le \dots \le x_k$, with $x_i \in P$.

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

- 4 同 1 4 日 1 4 日 1 日 1 9 9 9 9

- A partition $\pi = \{V_1, \dots, V_r\}$ is called k-equal if $V_i = k$ for all i.
- A partition $\pi = \{V_1, \dots, V_r\}$ is called k-divisible if $k \mid V_i$ for all *i*.
- We will denote the set of k-divisible non crossing partitions of kn elements by NC^(k)(n).
- A k-multichain of a POSET P is a sequence $x_1 \le x_2 \le x_3 \le \dots \le x_k$, with $x_i \in P$.

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

- A partition $\pi = \{V_1, \dots, V_r\}$ is called *k*-equal if $V_i = k$ for all *i*.
- A partition $\pi = \{V_1, \dots, V_r\}$ is called k-divisible if $k \mid V_i$ for all *i*.
- We will denote the set of k-divisible non crossing partitions of kn elements by NC^(k)(n).
- A k-multichain of a POSET P is a sequence $x_1 \le x_2 \le x_3 \le \dots \le x_k$, with $x_i \in P$.

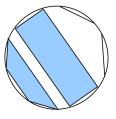
Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

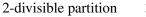
▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

- A partition $\pi = \{V_1, \dots, V_r\}$ is called *k*-equal if $V_i = k$ for all *i*.
- A partition $\pi = \{V_1, \dots, V_r\}$ is called k-divisible if $k \mid V_i$ for all *i*.
- We will denote the set of k-divisible non crossing partitions of kn elements by NC^(k)(n).
- A k-multichain of a POSET P is a sequence $x_1 \le x_2 \le x_3 \le \cdots \le x_k$, with $x_i \in P$.

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

Non-Crossing Partitions k-divisible Non Crossing Partititios





3-equal partition

ELE DOG

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲帰▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへの

Non-Crossing Partitions

Theorem (Kreweras, 1972)

The number of k + 1-equal partitions of $\{1, 2, ..., (k + 1)n\}$ is the Fuss-Catalan number

$$C_n^k = \frac{\binom{n(k+1)}{n}}{nk+1}$$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲帰▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへの

Non-Crossing Partitions

Theorem

The number of k-divisible partitions of $\{1,2,...,kn\}$ is the Fuss-Catalan number

$$C_n^k = \frac{\binom{n(k+1)}{n}}{nk+1}$$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

∃ ► ▲ ∃ ► ▲ ∃ ■ ○ ○ ○ ○

Non-Crossing Partitions

Theorem (Edelman 1980)

The number of k-multichains of NC(n) is the Fuss-Catalan number

$$C_n^k = \frac{\binom{n(k+1)}{n}}{nk+1}$$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

Non-Crossing Partitions Counting results.

Corollary

The k + 1-equal partitions of [(k+1)n] are in bijection with the k-divisible partitions of nk and the k-multichains of NC(n).

Can we recover this from the main theorem?

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ · · · ○ ○ ○

Non-Crossing Partitions Counting results.

Corollary

The k + 1-equal partitions of [(k+1)n] are in bijection with the k-divisible partitions of nk and the k-multichains of NC(n).

Can we recover this from the main theorem?

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲母▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わえゆ

Non-Crossing Partitions NC^(k) as a lattice.

Consider the partial order $(NC^{(k)}(n), \leq)$ seeing $NC^{(k)}(n)$ as a subposet in NC(n)

 $(NC^{(k)}(n), \leq)$ is not a lattice. However it is a *POSET* and then we can consider a combinatorial convolution in $(NC^{(k)}(n), \leq)$.

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲母▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わえゆ

Non-Crossing Partitions NC^(k) as a lattice.

Consider the partial order $(NC^{(k)}(n), \leq)$ seeing $NC^{(k)}(n)$ as a subposet in NC(n)

 $(NC^{(k)}(n), \leq)$ is not a lattice. However it is a *POSET* and then we can consider a combinatorial convolution in $(NC^{(k)}(n), \leq)$.

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

∃ ▶ ∢

Non-Crossing Partitions

Remark

The convolution in $NC^{(k)}$ of multiplicative families is equivalent to convolution in NC with dilated sequences.

$$\beta_n = \sum_{\pi \in NC^{(k)}(n)} \alpha_\pi \iff \beta_n^{(k)} = \sum_{\pi \in NC(n)} \alpha_\pi^{(k)}$$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

Non-Crossing Partitions k multichains

Remark

The number of k-multichains with minimal element x_1 and maximal element x_k in a POSET P is given by

$$\zeta_P * \cdots * \zeta_P(x_1, x_k) = \sum_{x_1 \leq \cdots \leq x_k} 1$$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Non-Crossing Partitions as a lattice.

Theorem

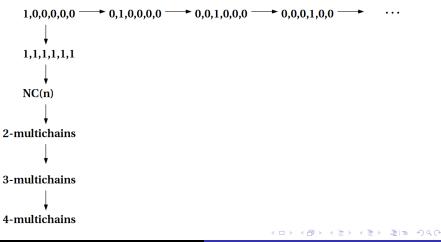
The following statements are equivalent:

1) The family $(g_n)_{n\geq 1}$ is the result of applying k times the zeta function to $(f_n)_{n\geq 1}$. $(g = f * \zeta * \cdots * \zeta)$

2) The family $(g_n^{(k)})_{n\geq 1}$ is the result of applying the zeta function to $(f_n^{(k)})_{n\geq 1}$. $(g^{(k)} = f^{(k)} * \zeta)$.

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

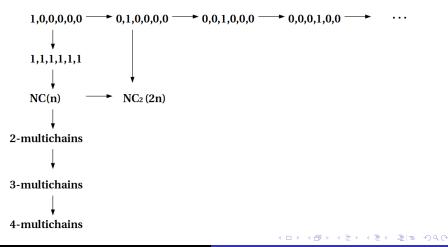
Non-Crossing Partitions



Octavio Arizmendi Echegaray

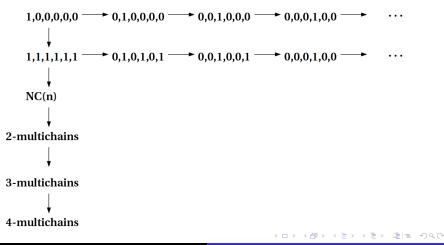
Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

Non-Crossing Partitions Counting...



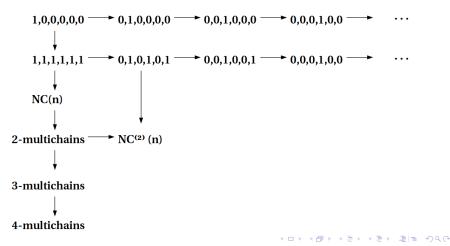
Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

Non-Crossing Partitions



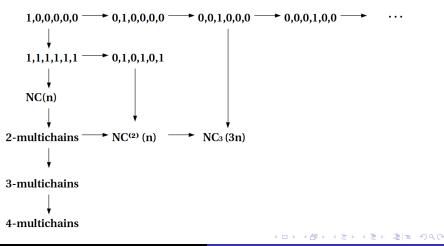
Octavio Arizmendi Echegaray

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

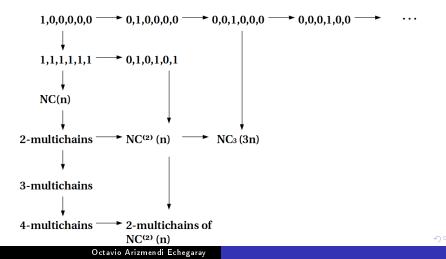


Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

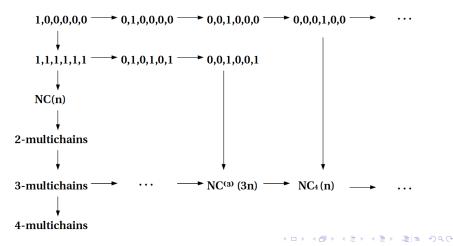
Non-Crossing Partitions Counting...



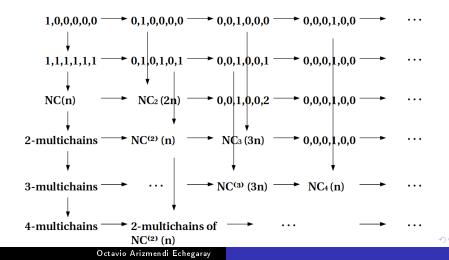
Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.



Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.



Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.



Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲冊▶ ▲目▶ ▲目▶ 目目 ののの

Non-Crossing Partitions Summary

Corollary

The k+1-equal partitions of [(k+1)n] are in bijection with the k-divisible partitions of nk and the k-multichains of NC(n).

Corollary

We also recover the result of Armstrong (2007) that $#(NC^{(k)}(n))^{(l)} = #(NC^{(kl)}(n)).$

Definitions. NC(n) as a lattice. K-divisible Non Crossing Partitions.

▲冊 ▲ 三 ▶ ▲ 三 ▶ 三 三 ● ○ ○ ○

Non-Crossing Partitions Summary

Corollary

The k+1-equal partitions of [(k+1)n] are in bijection with the k-divisible partitions of nk and the k-multichains of NC(n).

Corollary

We also recover the result of Armstrong (2007) that $#(NC^{(k)}(n))^{(l)} = #(NC^{(kl)}(n)).$

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

글 > 글 글 글

Outline

Non Crossing Partitions

- Definitions.
- NC(n) as a lattice.
- K-divisible Non Crossing Partitions.

2 Free Probability

Basic Definitions

- Free Cumulants
- K-divisible elements
- Free Convolutions

3 Further Development

- Convolution with functions other than zeta.
- Anular Partitions and Second Order Freeness

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

Free Probability Non-Commutative Probability Spaces

A non-commutative probability is a pair (\mathscr{A}, φ) , where \mathscr{A} is a unital algebra and $\varphi : \mathscr{A} \to \mathbb{C}$ is a linear functional s.t. $\varphi(1) = 1$. When \mathscr{A} is a C^* -algebra φ is positive we call \mathscr{A} a C^* -probability space. In this frame we will talk about:

(non-commutative) random variables: $a \in \mathscr{A}$

normal elements: $a \in \mathscr{A}$ s. t. $a^*a = aa^*$

self-adjoint: $a \in \mathscr{A}$ s. t. $a = a^*$

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

Free Probability Non-Commutative Probability Spaces

A non-commutative probability is a pair (\mathscr{A}, φ) , where \mathscr{A} is a unital algebra and $\varphi : \mathscr{A} \to \mathbb{C}$ is a linear functional s.t. $\varphi(1) = 1$. When \mathscr{A} is a C^* -algebra φ is positive we call \mathscr{A} a C^* -probability space. In this frame we will talk about:

(non-commutative) random variables: $a \in \mathscr{A}$

normal elements: $a \in \mathscr{A}$ s. t. $a^*a = aa^*$

self-adjoint: $a \in \mathscr{A}$ s. t. $a = a^*$

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

Free Probability Non-Commutative Probability Spaces

A non-commutative probability is a pair (\mathscr{A}, φ) , where \mathscr{A} is a unital algebra and $\varphi : \mathscr{A} \to \mathbb{C}$ is a linear functional s.t. $\varphi(1) = 1$. When \mathscr{A} is a C^* -algebra φ is positive we call \mathscr{A} a C^* -probability space. In this frame we will talk about:

(non-commutative) random variables: $a \in \mathscr{A}$

normal elements: $a \in \mathscr{A}$ s. t. $a^*a = aa^*$

 $\mathsf{self}\mathsf{-}\mathsf{adjoint}: a \in \mathscr{A} \ \mathsf{s.} \ \mathsf{t.} \ a = a^*$

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

⇒ ↓ = ↓ = | = √Q0

Free Probability Non-Commutative Probability Spaces

A non-commutative probability is a pair (\mathscr{A}, φ) , where \mathscr{A} is a unital algebra and $\varphi : \mathscr{A} \to \mathbb{C}$ is a linear functional s.t. $\varphi(1) = 1$. When \mathscr{A} is a C^* -algebra φ is positive we call \mathscr{A} a C^* -probability space. In this frame we will talk about:

(non-commutative) random variables: $a \in \mathscr{A}$

normal elements: $a \in \mathscr{A}$ s. t. $a^*a = aa^*$

self-adjoint: $a \in \mathscr{A}$ s.t. $a = a^*$

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

Free Probability Free Independence

The unital sub-algebras $(\mathscr{A}_i)_{i \in I}$ of \mathscr{A} are called **freely independent** if for any $k \in \mathbb{N}$, we have

$$\varphi(a_1,\ldots,a_k)=0,$$

whenever:

i) $a_i \in \mathscr{A}_{j(i)}, j(1) \neq j(2) \neq \cdots \neq j(k)$ and ii) $\varphi(a_1) = \varphi(a_2) = \cdots = \varphi(a_k) = 0$. Random variables $(a_i)_{i \in I}$ are **free** if the unital algebras generated by them are free.

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Free Probability Free Independence

The unital sub-algebras $(\mathscr{A}_i)_{i \in I}$ of \mathscr{A} are called **freely independent** if for any $k \in \mathbb{N}$, we have

$$\varphi(a_1,\ldots,a_k)=0,$$

whenever:

i)
$$a_i \in \mathscr{A}_{j(i)}, j(1) \neq j(2) \neq \cdots \neq j(k)$$
 and
ii) $\varphi(a_1) = \varphi(a_2) = \cdots = \varphi(a_k) = 0$.
Random variables $(a_i)_{i \in I}$ are **free** if the unital algebras generated
by them are free.

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

Free Probability Free Independence

The unital sub-algebras $(\mathscr{A}_i)_{i \in I}$ of \mathscr{A} are called **freely independent** if for any $k \in \mathbb{N}$, we have

$$\varphi(a_1,\ldots,a_k)=0,$$

whenever:

i)
$$a_i \in \mathscr{A}_{j(i)}, j(1) \neq j(2) \neq \cdots \neq j(k)$$
 and
ii) $\varphi(a_1) = \varphi(a_2) = \cdots = \varphi(a_k) = 0.$

Random variables $(a_i)_{i \in I}$ are free if the unital algebras generated by them are free.

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Free Probability Free Independence

The unital sub-algebras $(\mathscr{A}_i)_{i \in I}$ of \mathscr{A} are called **freely independent** if for any $k \in \mathbb{N}$, we have

$$\varphi(a_1,\ldots,a_k)=0,$$

whenever:

i)
$$a_i \in \mathscr{A}_{j(i)}, j(1) \neq j(2) \neq \cdots \neq j(k)$$
 and
ii) $\varphi(a_1) = \varphi(a_2) = \cdots = \varphi(a_k) = 0$.
Random variables $(a_i)_{i \in I}$ are **free** if the unital algebras generated
by them are free.

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

글 > 글 글 글

Outline

Non Crossing Partitions

- Definitions.
- NC(n) as a lattice.
- K-divisible Non Crossing Partitions.

2 Free Probability

Basic Definitions

Free Cumulants

- K-divisible elements
- Free Convolutions

3 Further Development

- Convolution with functions other than zeta.
- Anular Partitions and Second Order Freeness

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

▲母▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わえゆ

Free Probability Free Cumulants

The free cumulants $(\kappa_{\pi})_{\pi \in NC}$ is the multiplicative family of functionals in NC(n) defined inductively by the moments in (\mathscr{A}, φ) via the moment-cumulant formula: for all $n \in \mathbb{N}$, $a_1, \ldots, a_n \in \mathscr{A}$,

$$\varphi(a_1 \dots a_n) = \sum_{\pi \in NC(n)} \kappa_{\pi}[a_1, \dots, a_n],$$

$$\kappa_{\pi}[a_1, \dots, a_n] := \prod_{V_i \in \pi} \kappa_{\mathbf{1}_{|V_i|}} \left[a_{i_1}, \dots, a_{i_{|V_i|}} \right]$$

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Free Probability Free Cumulants

In particular, for a random variable a, the free cumulants $(\kappa_{\pi}(a))_{\pi\in NC}$, are defined via

$$arphi\left(a^{n}
ight)=\sum_{\pi\in NC(n)}\kappa_{\pi}(a)$$

Equivalently if $m_n = \varphi(a^n)$ then $m = \kappa * \zeta$.

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Free Probability Free Cumulants

In particular, for a random variable a, the free cumulants $(\kappa_{\pi}(a))_{\pi\in NC}$, are defined via

$$arphi(a^n) = \sum_{\pi \in NC(n)} \kappa_{\pi}(a)$$

Equivalently if $m_n = \varphi(a^n)$ then $m = \kappa * \zeta$.

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

Free Probability Freeness and Free Cumulants

Theorem (Vanishing of mixed Cumulants)

The non-commutative random variables $(a_i)_{i \in I}$ in \mathscr{A} are freely independent iff for all $n \ge 2$, $i(1), \ldots, i(n) \in I$

$$\kappa_n\left(a_{i(1)},\ldots,a_{i(n)}\right)=0,$$

whenever there exist $1 \le k, l \le n$ with $i(k) \ne i(l)$.

Corollary. If a and b are free, then free cumulants are additive, namely

$$\kappa_n^{a+b} = \kappa_n^a + \kappa_n^b,$$

김 글 에 에 글 에 크 에 크 에

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

글 > 글 글 글

Outline

Non Crossing Partitions

- Definitions.
- NC(n) as a lattice.
- K-divisible Non Crossing Partitions.

2 Free Probability

- Basic Definitions
- Free Cumulants

K-divisible elements

Free Convolutions

3 Further Development

- Convolution with functions other than zeta.
- Anular Partitions and Second Order Freeness

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

K-divisible elements Defintions

An element $x \in A$ is called *k*-divisible if the only non vanishing moments are multiples of *k*. That is $\varphi(x^n) = 0$ whenever *k* does not divide s.

Let $x \in A$ be k-divisible and let $\alpha_n := \kappa_{kn}(x, ..., x)$. We call $(\alpha_n)_{n \ge 1}$ the k-determining sequence of x.

 $x \in A$ is k-divisible if and only if the only non-vanishing free cumulants are multiples of k.

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

K-divisible elements Defintions

An element $x \in A$ is called *k*-divisible if the only non vanishing moments are multiples of *k*. That is $\varphi(x^n) = 0$ whenever *k* does not divide s.

Let $x \in A$ be k-divisible and let $\alpha_n := \kappa_{kn}(x,...,x)$. We call $(\alpha_n)_{n \ge 1}$ the k-determining sequence of x.

 $x \in A$ is k-divisible if and only if the only non-vanishing free cumulants are multiples of k.

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

■ ▲ ■ ▲ ■ ■ ■ ● ● ● ●

K-divisible elements Defintions

An element $x \in A$ is called *k*-divisible if the only non vanishing moments are multiples of *k*. That is $\varphi(x^n) = 0$ whenever *k* does not divide s.

Let $x \in A$ be k-divisible and let $\alpha_n := \kappa_{kn}(x,...,x)$. We call $(\alpha_n)_{n \ge 1}$ the k-determining sequence of x.

 $x \in A$ is k-divisible if and only if the only non-vanishing free cumulants are multiples of k.

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

⇒ ↓ = ↓ = | = √Q0

K-divisible elements Motivation

Theorem (Speicher, Nica)

Let (A, φ) be a non-commutative probability space and let $x \in A$ be an **even element** with determining sequence $(\alpha_n)_{n\geq 1}$. Then the cumulants of x^2 are given as follows:

$$\kappa(x^2,\ldots x^2) = \sum_{\pi\in NC(n)} \alpha_{\pi}.$$

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

K-divisible elements Consequences

Theorem (A.)

Let (A, φ) be a non-commutative probability space and let x a k-divisible elements with k-determining sequence $(\alpha_n)_{n\geq 1}$. Then the following formula holds for the cumulants of x^k

$$\kappa_n(x^k, x^k, ..., x^k) = \alpha_n * \zeta_n * \cdots * \zeta_n$$

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

1.2

K-divisible elements

Consequences

Corollary

Let (A, φ) be a non-commutative probability space and let $x \in A$ be a k-divisible element with k-determining sequence $(\alpha_n)_{n\geq 1}$. Then the cumulants of x^k are given as follows:

$$\kappa_n\left(x^k,\ldots x^k\right) = \sum_{\pi\in NC((k-1)n)} \alpha_{\pi}^{(k-1)}$$

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

K-divisible elements

Consequences

Corollary

Let (A, φ) be a non-commutative probability space and let $x \in A$ be a k+1-divisible element with k+1-determining sequence $(\alpha_n)_{n=1}^{\infty}$. Then the following formula holds for the cumulants of x^{k+1} .

$$\kappa_n\left(x^{k+1},\ldots x^{k+1}\right) = \sum_{\pi\in NC(n)} \beta_{\pi},$$

where

$$\beta_n = \sum_{\pi \in NC((k-1)n)} \alpha_{\pi}^{(k-1)}.$$

ヨト イヨト

고 노

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

글 > 글 글 글

Outline

Non Crossing Partitions

- Definitions.
- NC(n) as a lattice.
- K-divisible Non Crossing Partitions.

2 Free Probability

- Basic Definitions
- Free Cumulants
- K-divisible elements
- Free Convolutions

3 Further Development

- Convolution with functions other than zeta.
- Anular Partitions and Second Order Freeness

Non Crossing Partitions Free Probability Further Development Free Convolutions Free Convolutions

Free Probability *-distributions

Since we are interested in the *-moments of an element $a \in \mathscr{A}$ that is

$$\varphi(a^{m_1}(a^*)^{n_1}\dots(a^*)^{n_k})$$

If $a \in \mathscr{A}$ is normal and μ_a is a probability measure on $\mathbb C$ such that

$$\int_{\mathbb{C}} z^{l} \bar{z}^{k} \mathrm{d}\mu\left(z\right) = \varphi\left(a^{l} \left(a^{*}\right)^{k}\right),$$

we call μ_a the *-distribution of a.

If \mathscr{A} is a C^* -algebra and $a \in \mathscr{A}$ is normal then the *-distribution of a exists and is unique. If a is selfadjoint then the support of μ_a is real.

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

■ ▲ ■ ▲ ■ ■ ■ ● ● ● ●

Free Probability Free Multiplicative Convolution

Ley *a* be positive and *b* selfadjoint. If *a* and *b* are free selfadjoint with *-distributions μ and ν , respectively, and then the **free multiplicative convolution** of μ and ν is the distribution $a^{1/2}ba^{1/2}$ and is denoted by $\mu \boxtimes \nu$.

The operation \boxtimes is associative and commutative if we restrict to positive measures.

Non Crossing Partitions Free Probability Further Development Free Convolutions Free Convolutions

Free Probability Free Compound Poisson Distributions

Let $\lambda > 0$ and v be a prob. m. supp. on \mathbb{R} , If μ is a prob. m. such that, for $n \geq 1$

$$\kappa_n^{(\mu)} = \lambda m_n(\nu),$$

 $\pi_{\lambda}(v) := \mu$ is called the **free compound Poisson distribution** of rate λ and jump distribution v. We denote by $\pi_{\lambda} := \pi_{\lambda}(\delta_1)$ and by $\pi := \pi_1$.

If μ is a free compound Poisson with rate 1 and jump distribution v then

$$\mu=\pi_1(\nu)=\pi\boxtimes\nu$$

A ∃ ► A ∃ ► ∃ = <</p>

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

Free Probability Free Compound Poissons and Free Infinite Divisibility

Corollary

If x is even with disitribution μ a symmetric compound poisson with rate 1 and jump distribution ν ($\mu = \pi(1, \nu)$). Then the distribution μ^2 of x^2 is a compound poisson with rate 1 and jump distribution $\rho = \pi(1, \nu^2)$. Equivalently,

$$(\pi \boxtimes v)^2 = \pi^{\boxtimes 2} \boxtimes v^2$$

Corollary

If μ is symmetric and free infinitely divisible, then μ^2 is also free infinitely divisible.

Octavio Arizmendi Echegaray

Basic Definitions Free Cumulants K-divisible elements Free Convolutions

Free Convolution Free Compound Poissons

Corollary. Suppose that x is an k-divisible element with k-determining sequence $(\alpha_n)_{n\geq 1}$, and suppose that $(\alpha_n)_{n\geq 1}$ is a cumulant sequence of a positive element $(k_n(a) = \alpha_n)$ with distribution ρ , then

$$\mu = \pi^{oxtimes k-1}oxtimes
ho$$

In particular when $lpha_n=m_n(
u)$ then

$$\mu = \pi^{\boxtimes k} \boxtimes v.$$

■ ▲ ■ ▲ ■ ■ ■ ● ● ● ●

Convolution with functions other than zeta. Anular Partitions and Second Order Freeness

Outline

Non Crossing Partitions

- Definitions.
- NC(n) as a lattice.
- K-divisible Non Crossing Partitions.

2 Free Probability

- Basic Definitions
- Free Cumulants
- K-divisible elements
- Free Convolutions

3 Further Development

- Convolution with functions other than zeta.
- Anular Partitions and Second Order Freeness

Convolution with functions other than zeta. Anular Partitions and Second Order Freeness

Further Development

Theorem (A., Perez-Abreu, 2009)

If σ is a symmetric measure and ρ is a measure with positive support then

$$(\rho \boxtimes v)^2 = \rho^{\boxtimes 2} \boxtimes v^2$$

Convolution with functions other than zeta. Anular Partitions and Second Order Freeness

A ∃ ► A ∃ ► ∃ = <</p>

Further Development

Question. For which familiesh is true that the following statements are equivalent?

1)The family $(g_n)_{n\geq 1}$ is the $k-{\rm fold}$ convolution of $(h_n)_{n\geq 1}$ to $(f_n)_{n\geq 1}.(g=f*h*\cdots*h$)

2) The family $(g_n^{(k)})_{n\geq 1}$ is the k-fold convolution of $(h_n)_{n\geq 1}$ to $(f_n^{(k)})_{n\geq 1}$. $(g^{(k)} = f^{(k)} * h)$.

Convolution with functions other than zeta. Anular Partitions and Second Order Freeness

Outline

Non Crossing Partitions

- Definitions.
- NC(n) as a lattice.
- K-divisible Non Crossing Partitions.

2 Free Probability

- Basic Definitions
- Free Cumulants
- K-divisible elements
- Free Convolutions

3 Further Development

- Convolution with functions other than zeta.
- Anular Partitions and Second Order Freeness

Further Development Counting results.

The following is a bijection between the k + 1-equal partitions of kn + n and the k-divisible partitions of nk elements.

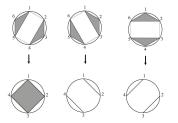


Figure: Bijection between for k=2

Convolution with functions other than zeta. Anular Partitions and Second Order Freeness

ELE DOG

Further Development Anular Partitions

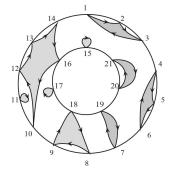


Figure: Anular Partition

Convolution with functions other than zeta. Anular Partitions and Second Order Freeness

Thanks

Octavio Arizmendi Echegaray

Convolution with functions other than zeta. Anular Partitions and Second Order Freeness

Octavio Arizmendi Echegaray

🫸 A. Autor.

Manual de Lo que sea. Editorial, 1990.

S. Alguien.

Sobre esto y aquello.

Revista Esto y Aquello. 2(1):50-100, 2000.