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Non-Crossing Partitions
De�nitions

We call π = {V1, . . . ,Vr} a partition of the set S if and only if

Vi (1≤ i ≤ r) are pairwise disjoint, non-void subsets of S , s.t

V1∪·· ·∪Vr = S . We call V1, · · · ,Vr the blocks of π.

The set of all partitions of S is denoted byP(S). When

S = {1, . . . ,n} we will talk about P(n).

A partition π = {V1, . . . ,Vr} is called crossing if there are

Vi ,Vj with j 6= i and a < b < c < d such that a,c ∈ Vi and

b,c ∈ Vj .

If is not crossing, then it is called non-crossing. The set of

non-crossing partitions will be denoted by NC (S). When

S = {1, . . . ,n} then we will talk about NC (n).
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Linear Representation

Crossing Partition

π = {{1,4} ,{2,3,5} ,{6} ,{7,8}} ,

1 2 3 4 5 6 7 8
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Figure: Circular Representation
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Non-Crossing Partitions
NC(n) as a lattice.

We de�ne the partial order (P(n),≤) as follows: Let π and σ be

two partitions in P(n), we say that π ≤ σ if every block V ∈ π is

contained completely in some block W ∈ σ

The partial order (P(n),≤) induces a lattice structure in P(n).

We consider the partial order (NC (n),≤) seeing NC (n) as a

subposet in P(n)

The partial order (NC (n),≤) induces a lattice structure in NC (n).
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Non-Crossing Partitions
Combinatorial Convolution.

Let P be a �nite partially ordered. For functions f : P → C and

G : P(2)→ C the convolution f ∗G : P → C is the function de�ned

by

(f ∗G )(σ) = ∑
ρ∈P,ρ∈P

f (ρ)G (ρ,σ)

The zeta function on P , ζ : P(2)→C is de�ned by

ζ (π,σ) =

{
1 π ≤ σ

0 π � σ
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Non-Crossing Partitions
Multiplicative families

Let (α)n>0 be a sequence of complex numbers.

De�ne fn : NC (n)→ C,n ≥ 1, by the following formula:

fn(π) = α|V1| · · ·α|Vr |

where π = {V1, . . . ,Vr} ∈ NC (n).

(fn)n≥1 is called the multiplicative family of functions on NC

determined by (αn)n≥1.

We will use the notation

απ := fn(π) = α|V1| · · ·α|Vr |
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Non-Crossing Partitions
Dilated sequences

Let (an)n≥1 be a sequence of complex numbers.

We call(a
(k)
n )n≥1 the k-dilation of (an)n≥1 to be the sequence s. t.

a
(k)
nk

= an

a
(k)
s = 0 if k does not divide s .

Quick example: If (an)n≥1 = {1,2,3,4,5,6, ...} then:
(a

(2)
n )n≥1 = {0,1,0,2,0,3,0,4,0,5...}

(a
(3)
n )n≥1 = {0,0,1,0,0,2,0,0,3, ...}
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Non-Crossing Partitions
Multiplicative families

What is the relation between

f ∗ζ ∗ · · · ∗ζ

and

f (k) ∗ζ

when f belongs to a multiplicative family on NC ?
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Non-Crossing Partitions
Main Result

Theorem (A.)

The following statements are equivalent:

1)The family (gn)n≥1 is the result of applying k times the zeta

function to (fn)n≥1.(g = f ∗ζ ∗ · · · ∗ζ )

2)The family (g
(k)
n )n≥1 is the result of applying the zeta function

to (f
(k)
n )n≥1 . (g (k) = f (k) ∗ζ ).

Remark

This property is not true for P(n) or I (n)!!!
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Non-Crossing Partitions
k-divisibles NC.

Example

Let {an}n>0 = {1,0, ...}, b = a ∗ζ . and c = b ∗ζ ∗ζ . Then

bn = ∑
π∈NC(n)

aπ = a||···| = 1 cn = ∑
π∈NC(n)

bπ = ∑
π∈NC(n)

1 = #NC (n)

(a
(2)
n )n>0 = {0,1,0, ...} and let d = a(2) ∗ζ . Then

d2n = ∑
π∈NC(2n)

a
(2)
π = ∑

π ∈ NC2(2n)

1 = #{π ∈ NC (2n) | π pair}

By the last theorem dn = c
(2)
n or d2n = cn.
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Non-Crossing Partitions
k-divisible Non Crossing Partititios

A partition π = {V1, . . . ,Vr} is called k-equal if Vi = k for all i .

A partition π = {V1, . . . ,Vr} is called k-divisible if k | Vi for all

i .

We will denote the set of k-divisible non crossing partitions of

kn elements by NC (k)(n).

A k-multichain of a POSET P is a sequence

x1 ≤ x2 ≤ x3 ≤ ·· · ≤ xk , with xi ∈ P .
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Non-Crossing Partitions
k-divisible Non Crossing Partititios

2-divisible partition 3-equal partition
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Non-Crossing Partitions
Counting...

Theorem (Kreweras, 1972)

The number of k +1-equal partitions of {1,2, ...,(k +1)n} is the
Fuss-Catalan number

C k
n =

(
n(k +1)

n

)
nk +1
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Non-Crossing Partitions
Counting....

Theorem (Edelman 1980)

The number of k-multichains of NC (n) is the Fuss-Catalan number

C k
n =

(
n(k +1)

n

)
nk +1
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Non-Crossing Partitions
Counting results.

Corollary

The k +1-equal partitions of [(k +1)n] are in bijection with the

k-divisible parititions of nk and the k-multichains of NC (n).

Can we recover this from the main theorem?
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Non-Crossing Partitions
NC^(k) as a lattice.

Consider the partial order (NC (k)(n),≤) seeing NC (k)(n) as a

subposet in NC (n)

(NC (k)(n),≤) is not a lattice. However it is a POSET and then we

can consider a combinatorial convolution in (NC (k)(n),≤).
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Non-Crossing Partitions
NC^k as a lattice.

Remark

The convolution in NC (k)of multiplicative families is equivalent to

convolution in NC with dilated sequences.

βn = ∑
π∈NC (k)(n)

απ ⇐⇒ β
(k)
n = ∑

π∈NC(n)

α
(k)
π
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Non-Crossing Partitions
k multichains

Remark

The number of k-multichains with minimal element x1 and maximal

element xk in a POSET P is given by

ζP ∗ · · · ∗ζP(x1,xk) = ∑
x1≤···≤xk

1
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function to (fn)n≥1.(g = f ∗ζ ∗ · · · ∗ζ )

2)The family (g
(k)
n )n≥1 is the result of applying the zeta function

to (f
(k)
n )n≥1 . (g (k) = f (k) ∗ζ ).
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Corollary

The k +1-equal partitions of [(k +1)n] are in bijection with the

k-divisible parititions of nk and the k-multichains of NC (n).

Corollary

We also recover the result of Armstrong (2007) that

#(NC (k)(n))(l) =#(NC (kl)(n)).
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Non-Commutative Probability Spaces

A non-commutative probability is a pair (A ,ϕ), whereA is a unital

algebra and ϕ : A → C is a linear functional s.t. ϕ (1) = 1.
When A is a C ∗-algebra ϕ is positive we call A a C ∗-probability
space. In this frame we will talk about:

(non-commutative) random variables: a ∈A

normal elements: a ∈A s. t. a∗a = aa∗

self-adjoint:a ∈A s. t. a = a∗
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The unital sub-algebras (Ai )i∈I of A are called freely independent
if for any k ∈ N, we have

ϕ (a1, . . . ,ak) = 0,

whenever:

i) ai ∈Aj(i), j (1) 6= j (2) 6= · · · 6= j (k) and
ii)ϕ (a1) = ϕ (a2) = · · ·= ϕ (ak) = 0.
Random variables (ai )i∈I are free if the unital algebras generated

by them are free.

Octavio Arizmendi Echegaray



Non Crossing Partitions
Free Probability

Further Development

Basic De�nitions
Free Cumulants
K-divisible elements
Free Convolutions

Free Probability
Free Independence

The unital sub-algebras (Ai )i∈I of A are called freely independent
if for any k ∈ N, we have

ϕ (a1, . . . ,ak) = 0,

whenever:

i) ai ∈Aj(i), j (1) 6= j (2) 6= · · · 6= j (k) and
ii)ϕ (a1) = ϕ (a2) = · · ·= ϕ (ak) = 0.
Random variables (ai )i∈I are free if the unital algebras generated

by them are free.

Octavio Arizmendi Echegaray



Non Crossing Partitions
Free Probability

Further Development

Basic De�nitions
Free Cumulants
K-divisible elements
Free Convolutions

Free Probability
Free Independence

The unital sub-algebras (Ai )i∈I of A are called freely independent
if for any k ∈ N, we have

ϕ (a1, . . . ,ak) = 0,

whenever:

i) ai ∈Aj(i), j (1) 6= j (2) 6= · · · 6= j (k) and
ii)ϕ (a1) = ϕ (a2) = · · ·= ϕ (ak) = 0.
Random variables (ai )i∈I are free if the unital algebras generated

by them are free.

Octavio Arizmendi Echegaray



Non Crossing Partitions
Free Probability

Further Development

Basic De�nitions
Free Cumulants
K-divisible elements
Free Convolutions

Free Probability
Free Independence

The unital sub-algebras (Ai )i∈I of A are called freely independent
if for any k ∈ N, we have

ϕ (a1, . . . ,ak) = 0,

whenever:

i) ai ∈Aj(i), j (1) 6= j (2) 6= · · · 6= j (k) and
ii)ϕ (a1) = ϕ (a2) = · · ·= ϕ (ak) = 0.
Random variables (ai )i∈I are free if the unital algebras generated

by them are free.

Octavio Arizmendi Echegaray



Non Crossing Partitions
Free Probability

Further Development

Basic De�nitions
Free Cumulants
K-divisible elements
Free Convolutions

Outline

1 Non Crossing Partitions

De�nitions.

NC(n) as a lattice.

K-divisible Non Crossing Partitions.

2 Free Probability

Basic De�nitions

Free Cumulants

K-divisible elements

Free Convolutions

3 Further Development

Convolution with functions other than zeta.

Anular Partitions and Second Order Freeness

Octavio Arizmendi Echegaray



Non Crossing Partitions
Free Probability

Further Development

Basic De�nitions
Free Cumulants
K-divisible elements
Free Convolutions

Free Probability
Free Cumulants

The free cumulants (κπ)
π∈NC is the multiplicative family of

functionals in NC (n) de�ned inductively by the moments in (A ,ϕ)
via the moment-cumulant formula: for all n ∈ N, a1, . . . ,an ∈A ,

ϕ (a1 . . .an) = ∑
π∈NC(n)

κπ [a1, . . . ,an] ,

κπ [a1, . . . ,an] := ∏
Vi∈π

κ1|Vi |

[
ai1 , . . . ,ai|Vi |

]
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In particular, for a random variable a, the free cumulants

(κπ(a))
π∈NC , are de�ned via

ϕ (an) = ∑
π∈NC(n)

κπ(a)

Equivalently if mn = ϕ (an) then m = κ ∗ζ .
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Theorem ( Vanishing of mixed Cumulants)

The non-commutative random variables(ai )i∈I in A are freely

independent i� for all n ≥ 2, i (1) , . . . , i (n) ∈ I

κn

(
ai(1), . . . ,ai(n)

)
= 0,

whenever there exist 1≤ k , l ≤ n with i (k) 6= i (l) .

Corollary. If a and b are free, then free cumulants are additive,

namely

κ
a+b
n = κ

a
n + κ

b
n ,
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An element x ∈ A is called k-divisible if the only non vanishing

moments are multiples of k . That is ϕ(xn) = 0 whenever k does

not divide s.

Let x ∈ A be k-divisible and let αn := κkn(x , ...,x). We call (αn)n≥1
the k-determining sequence of x .

x ∈ A is k-divisible if and only if the only non-vanishing free

cumulants are multiples of k .
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Motivation

Theorem ( Speicher, Nica)

Let (A,ϕ) be a non-commutative probability space and let x ∈ A be

an even element with determining sequence (αn)n≥1. Then the

cumulants of x2 are given as follows:

κ
(
x2, . . .x2

)
= ∑

π∈NC(n)

απ .
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Theorem ( A.)

Let (A,ϕ) be a non-commutative probability space and let x a

k-divisible elements with k-determining sequence (αn)n≥1. Then
the following formula holds for the cumulants of xk

κn(xk ,xk , ...,xk) = αn ∗ζn ∗ · · · ∗ζn
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Corollary

Let (A,ϕ) be a non-commutative probability space and let x ∈ A be

a k-divisible element with k-determining sequence (αn)n≥1. Then
the cumulants of xk are given as follows:

κn

(
xk , . . .xk

)
= ∑

π∈NC((k−1)n)
α
(k−1)
π .
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Consequences

Corollary

Let (A,ϕ) be a non-commutative probability space and let x ∈ A be

a k +1-divisible element with k +1-determining sequence (αn)∞
n=1.

Then the following formula holds for the cumulants of xk+1.

κn

(
xk+1, . . .xk+1

)
= ∑

π∈NC(n)

βπ ,

where

βn = ∑
π∈NC((k−1)n)

α
(k−1)
π .
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*-distributions

Since we are interested in the ∗-moments of an element a ∈A
that is

ϕ(am1(a∗)n1 . . .(a∗)nk )

If a ∈A is normal and µa is a probability measure on C such that∫
C
z l z̄kdµ (z) = ϕ

(
al (a∗)k

)
,

we call µa the ∗-distribution of a.

If A is a C ∗-algebra and a ∈A is normal then the ∗-distribution of

a exists and is unique. If a is selfadjoint then the support of µa is

real.
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Free Probability
Free Multiplicative Convolution

Ley a be positive and b selfadjoint. If a and b are free selfadjoint

with ∗-distributions µ andν , respectively, and then the free
multiplicative convolution ofµ and ν is the distribution a1/2ba1/2

and is denoted by µ �ν .

The operation � is associative and commutative if we restrict to

positive measures.

Octavio Arizmendi Echegaray



Non Crossing Partitions
Free Probability

Further Development

Basic De�nitions
Free Cumulants
K-divisible elements
Free Convolutions

Free Probability
Free Compound Poisson Distributions

Let λ > 0 and ν be a prob. m. supp. on R, If µ is a prob. m. such

that, for n ≥ 1

κ
(µ)
n = λmn (ν) ,

πλ (ν) := µ is called the free compound Poisson distribution of

rate λ and jump distribution ν .

We denote by πλ := πλ (δ1) and by π := π1.

If µ is a free compound Poisson with rate 1 and jump distribution

ν then

µ = π1(ν) = π �ν
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Free Compound Poissons and Free In�nite Divisibility

Corollary

If x is even with disitribution µ a symmetric compound poisson

with rate 1 and jump distribution ν (µ = π(1,ν)). Then the

distribution µ2 of x2 is a compound poisson with rate 1 and jump

distribution ρ = π(1,ν2). Equivalently,

(π �ν)2 = π
�2�ν

2

Corollary

If µ is symmetric and free in�nitely divisible, then µ2 is also free

in�nitely divisible.
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Corollary. Suppose that x is an k-divisible element with

k-determining sequence (αn)n≥1, and suppose that (αn)n≥1 is a

cumulant sequence of a positive element (kn(a) = αn) with

distribution ρ , then

µ = π
�k−1�ρ

In particular when αn = mn(ν) then

µ = π
�k �ν .
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Theorem ( A., Perez-Abreu, 2009)

If σ is a symmetric measure and ρ is a measure with positive

support then

(ρ �ν)2 = ρ
�2�ν

2
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Convolution

Question. For which familiesh is true that the following

statements are equivalent?

1)The family (gn)n≥1 is the k−fold convolution of(hn)n≥1 to

(fn)n≥1.(g = f ∗h ∗ · · · ∗h )

2)The family (g
(k)
n )n≥1 is the k−fold convolution of(hn)n≥1 to

(f
(k)
n )n≥1 . (g (k) = f (k) ∗h).
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Counting results.

The following is a bijection between the k +1-equal partitions of

kn+n and the k-divisible partitions of nk elements.

Figure: Bijection between for k=2
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Anular Partitions

Figure: Anular Partition
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S. Alguien.
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