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Introduction Context

What is this talk about?

Irreducible representations of Sn ≃ partitions λ ⊢ n.

We are interested in normalized character values:

χλ(σ) =
tr
(

ρλ(σ)
)

dim(Vλ)
.
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We are interested in normalized character values:

χλ(σ) =
tr
(

ρλ(σ)
)

dim(Vλ)
.

Link with free probability (Biane, 1998):

χλ
(

(1 2 . . . k)
)

∼|λ|→∞ Rk+1(µλ).

Rk+1(µλ) is the free cumulant of some measure µλ canonically
associated to the diagram.
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Irreducible representations of Sn ≃ partitions λ ⊢ n.

We are interested in normalized character values:

χλ(σ) =
tr
(

ρλ(σ)
)

dim(Vλ)
.

Link with free probability (Biane, 1998):

χλ
(

(1 2 . . . k)
)

∼|λ|→∞ Rk+1(µλ).

Rk+1(µλ) is the free cumulant of some measure µλ canonically
associated to the diagram.

These objects live in a combinatorial Hopf algebra.
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Introduction Outline

Outline of the talk

1 A combinatorial Hopf algebra
Bipartite graphs
Relations
Polynomial realization

2 Characters of symmetric group and free cumulants
Definitions
Combinatorial formulas
Application to Kerov’s polynomials
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A combinatorial Hopf algebra Bipartite graphs

The ground set of combinatorial objects

We consider:

unlabelled undirected bipartite
graphs,

without multiple edges,

without isolated black vertices.
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A combinatorial Hopf algebra Bipartite graphs

A Hopf algebra structure

We define H as:

the space of finite linear combination of graphs;

the product is defined on the basis by the disjoint union:

G · G ′ = G ⊔ G ′

the coproduct is given by:

∆(G ) =
∑

E⊂V◦(G)

GE ⊗ (G\GE ),

where GE is the induced graph on the vertices in E and their
neighbours.

With some appropriate antipode, H is a Hopf algebra.
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A combinatorial Hopf algebra Bipartite graphs

Example of coproduct

∆
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A combinatorial Hopf algebra Bipartite graphs

Example of coproduct

∆












= 1 ⊗

+ ⊗ + ⊗ + ⊗

+ ⊗ + ⊗ + ⊗

+ ⊗ 1

Valentin Féray (LaBRI, CNRS) Comb Hopf algebra and characters Vienna, 2011-02 6 / 27



A combinatorial Hopf algebra Relations

Annihilator elements

Consider a bipartite graph G endowed
with an oriented cycle C .

We define the following element of H

AG ,C =
∑

E⊆E (C)

(−1)|E |G \ E

Example :

− − +
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A combinatorial Hopf algebra Relations

Quotient Hopf algebra

Let
I := Vect(AG ,C )

Lemma

I is an ideal of the algebra H.

∆(I) ⊆ I ⊗H +H⊗ I .

Hence H/I is a Hopf algebra.
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A combinatorial Hopf algebra Relations

A generating family

Definition

Let I = (i1, i2, . . . , ir ) be a composition. Define GI as the following
bipartite graph:

i1 -1 black

vertices
i2 -1 black

vertices

i_r -1 black

vertices
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A combinatorial Hopf algebra Relations

A generating family

Definition

Let I = (i1, i2, . . . , ir ) be a composition. Define GI as the following
bipartite graph:

i1 -1 black

vertices
i2 -1 black

vertices

i_r -1 black

vertices

Proposition

{GI , I composition} is a linear generating set of H/I .
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A combinatorial Hopf algebra Relations

Idea of proof

Proposition

{GI , I composition} is a linear generating set of H/I .

graph GI
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A combinatorial Hopf algebra Relations

Idea of proof

Proposition

{GI , I composition} is a linear generating set of H/I .

Consider a graph G 6= GI
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A combinatorial Hopf algebra Relations

Idea of proof

Proposition

{GI , I composition} is a linear generating set of H/I .

There is a graph G0 with an oriented cycle C such that
G0\E (C ) = G
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A combinatorial Hopf algebra Relations

Idea of proof

Proposition

{GI , I composition} is a linear generating set of H/I .

Consider a graph G 6= GI .

Lemma: There is a graph G0 with an oriented cycle C such that:

G0\E (C ) = G

Consequence : in H/I , G = linear combination of bigger graphs.

→ we iterate until we obtain a linear combination of GI ’s.
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A combinatorial Hopf algebra Polynomial realization

Polynomials associated to graphs

Let p = (p1, p2, . . . ) and q = (q1, q2, . . . ) two set (infinite) sets of
variables.

Let G be a bipartite graph.

MG (p,q) =
∑

ϕ:V◦(G)→N⋆

∏

◦∈V◦

pϕ(◦)
∏

•∈V•

qψ(•),

where ψ(•) = max
◦ neighbour

of •

ϕ(◦).

Example:
M =

∑

i ,j≥1

pipjqiqmax(i ,j).
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A combinatorial Hopf algebra Polynomial realization

Identification of the two algebras

Lemma

MG⊔G ′ = MG · MG ′ .

MAG ,C
= 0.

The algebra Vect(MG ) is a quotient of H/I .
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A combinatorial Hopf algebra Polynomial realization

Identification of the two algebras

Lemma

MG⊔G ′ = MG · MG ′ .

MAG ,C
= 0.

The algebra Vect(MG ) is a quotient of H/I .

Lemma

The MGI
, where I runs over all compositions are linearly independent.

Hence, Vect(MG ) ≃ H/I and the GI ’s form a basis.
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A combinatorial Hopf algebra Polynomial realization

Identification of the two algebras

Lemma

MG⊔G ′ = MG · MG ′ .

MAG ,C
= 0.

The algebra Vect(MG ) is a quotient of H/I .

Lemma

The MGI
, where I runs over all compositions are linearly independent.

Hence, Vect(MG ) ≃ H/I and the GI ’s form a basis.

Remark

It is also isomorphic to the quasi-symmetric function ring.
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A combinatorial Hopf algebra Polynomial realization

Sketch of proof

Lemma

The MGI
, where I runs over all compositions are linearly independent.

Consider MGI
(p1, p2, . . . , pr , q1, q2, . . . , qr )

(we truncate the alphabets to r = ℓ(I ) = |V◦(GI )| variables)
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A combinatorial Hopf algebra Polynomial realization

Sketch of proof

Lemma

The MGI
, where I runs over all compositions are linearly independent.

Consider MGI
(p1, p2, . . . , pr , q1, q2, . . . , qr )

(we truncate the alphabets to r = ℓ(I ) = |V◦(GI )| variables)

We will consider only p-square free monomials.

As total degree in p is r , they are:

TJ = p1q
j1−1
1 p2q

j2−1
2 · · · prq

jr−1
r ,

where J is a composition of n (total number of vertices)

In MGI
, they correspond to bijections ϕ : V◦(GI ) ≃ {1, . . . , r}.
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A combinatorial Hopf algebra Polynomial realization

Sketch of proof

Lemma

The MGI
, where I runs over all compositions are linearly independent.

1 2 r

1

1

1 2

2

r

r

MGI
= TI
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A combinatorial Hopf algebra Polynomial realization

Sketch of proof

Lemma

The MGI
, where I runs over all compositions are linearly independent.

2 1 3

2

2

2 2

2
3

3

MGI
= TI +

∑

|J|=|I |=n, ℓ(J)=ℓ(I )=r

J≥I

cI ,JTJ

+ non-p-square-free terms

≥ stands for the right-dominance order.
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A combinatorial Hopf algebra Polynomial realization

Interpretation of the coproduct

Let us write
∆G =

∑

i

G
(i)
1 ⊗ G

(i)
2 .

Then

MG (p1, . . . , ph+ℓ, q1, . . . , qh+ℓ) =
∑

i

M
G

(i)
1

(ph+1, . . . , ph+ℓ, qh+1, . . . , qh+ℓ)

· M
G

(i)
2

(p1, . . . , ph, q1, . . . , qh)
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Characters of symmetric group and free cumulants Definitions

Representation theory of symmetric groups

A representation of Sn is a pair (ρ,V ):

V is a finite dimensional C-vector space;

ρ is a morphism Sn → GL(V ).

i.e., to each σ ∈ Sn, we associate a matrix ρ(σ) (we ask that the products
are compatible).

To a partition λ = (λ1, λ2, . . . ) of n (i.e. λ1 ≥ λ2 ≥ . . . and
∑

i λi = n),
we can associate canonically an (irreducible) representation (ρλ,Vλ).

We are interested in characters (=the trace of the representation matrices):

χλ(σ) = Tr(ρλ(σ))
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Characters of symmetric group and free cumulants Definitions

Central characters

Fix a partition µ of k . Let us define

Chµ :
Y → Q;

λ 7→ n(n − 1) . . . (n − k + 1) χλ(σ)
dim(Vλ)

,

where n = |λ|
and σ is a permutation in Sn of cycle type µ1n−k .

Examples:

Chµ(λ) = 0 as soon as |λ| < |µ|

Ch1k (λ) = n(n − 1) . . . (n − k + 1) for any λ ⊢ n

Ch(2)(λ) = n(n − 1)χλ
(

(1 2)
)

=
∑

i

(λi )
2 − (λ′i )

2

Chµ∪1(λ) = (n − |µ|)Chµ(λ) for any λ ⊢ n
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Characters of symmetric group and free cumulants Definitions

Partition, Young diagrams and interlacing coordinates

Consider partition λ = (4, 2, 2, 1). We draw the corresponding Young
diagram (in Russian convention).
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Characters of symmetric group and free cumulants Definitions

Partition, Young diagrams and interlacing coordinates

Consider partition λ = (4, 2, 2, 1). We draw the corresponding Young
diagram (in Russian convention).

x0 y1 x1 y2 x2 y3 x3

The xi (resp. yi ) are defined as x-coordinate of inner (resp. outer) corners.
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Characters of symmetric group and free cumulants Definitions

Free cumulants of the transition measure

Transition measure µλ:
∫

R

dµ(x)

z − x
=

∏

i z − yi
∏

z − xi

Free cumulants:
Rk(λ) := Rk(µλ)

Interesting because:

Ch(k)(λ) = Rk+1(λ) + smaller degree terms in R
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Characters of symmetric group and free cumulants Combinatorial formulas

Definition of the NG

Let G be a bipartite graph and λ a partition :

a

b

c
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Characters of symmetric group and free cumulants Combinatorial formulas

Definition of the NG

Let G be a bipartite graph and λ a partition :

a

b

c
a

b c

NG (λ) is the number of ways to:

associate to each edge of the graph a box of the diagram;
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Characters of symmetric group and free cumulants Combinatorial formulas

Definition of the NG

Let G be a bipartite graph and λ a partition :

a

b

c
a

b c

NG (λ) is the number of ways to:

associate to each edge of the graph a box of the diagram;

boxes correxponding to edges with the same white (resp. black)
extremity must be in the same row (resp. column)
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Characters of symmetric group and free cumulants Combinatorial formulas

Definition of the NG

Let G be a bipartite graph and λ a partition :

a

b

c
a

b, c

NG (λ) is the number of ways to:

associate to each edge of the graph a box of the diagram;

boxes correxponding to edges with the same white (resp. black)
extremity must be in the same row (resp. column)
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Characters of symmetric group and free cumulants Combinatorial formulas

An interesting particular case: rectangular partition

λ =

q

p

NG (λ) = p|V◦(G)| · q|V•(G)|

Indeed, one has to choose independently:

one row per white vertex ;

one column per black vertex.
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Characters of symmetric group and free cumulants Combinatorial formulas

Stanley’s coordinates

λ =

p
1

q1

p
2

q2

p
3

q3

NG (λ) = MG (p,q)

As a consequence,

Vect(NG ) ≃ Vect(MG ) ≃ H/I
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Characters of symmetric group and free cumulants Combinatorial formulas

A formula for character values and free cumulants.

Theorem (F. 2006, conjectured by Stanley)

Let µ ⊢ k.

Chµ =
∑

C

±NG(C),

where:

the sum runs over rooted bipartite maps with k edges and face-length

µ1, µ2, . . .

G (C ) is the underlying graph of C .
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Characters of symmetric group and free cumulants Combinatorial formulas

A formula for character values and free cumulants.

Theorem (F. 2006, conjectured by Stanley)

Let µ ⊢ k.

Chµ =
∑

C

±NG(C),

where:

the sum runs over rooted bipartite maps with k edges and face-length

µ1, µ2, . . .

G (C ) is the underlying graph of C .

Corollary (independant proof, Rattan 2006)

Rk+1 =
∑

T

±NT ,

where T runs over rooted plane tree with k edges.
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Characters of symmetric group and free cumulants Application to Kerov’s polynomials

Invariants

Theorem

There exists a family Fπ of functions H → C indexed by partitions such
that:

Fπ(G ) counts some colorings of white vertices of G with some
conditions on numbers of neighbours of set of vertices.

For any graph G with an oriented cycle C ,

Fπ(AG ,C ) = 0.

For any partition τ , denote Rτ =
∏

Rτi . Then,

Fπ(Rτ ) = δπ,τ .
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Characters of symmetric group and free cumulants Application to Kerov’s polynomials

Application

Fπ is defined on H/I and thus on Vect(NG ).

Fπ(Chµ) = [Rπ]Chµ

=
∑

C

±Fπ(C )

⇒ we have a combinatorial interpretation of the coefficients of Chµ written
as a polynomial in R .

Answer to a question raised by Kerov (2000).

Already known, but it is a bit simpler than previous proofs.
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Characters of symmetric group and free cumulants Application to Kerov’s polynomials

Extension to Jack polynomials

χλµ can be defined by:

sλ =
∑

µ

χλµ
pµ

zµ
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Characters of symmetric group and free cumulants Application to Kerov’s polynomials

Extension to Jack polynomials

χλµ can be defined by:

sλ =
∑

µ

χλµ
pµ

zµ

By replacing Schur function sλ by the Jack polynomial J
(α)
λ , one can define

a continuous deformation Ch(α)µ of Chµ = Ch(1)µ .
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Characters of symmetric group and free cumulants Application to Kerov’s polynomials

Extension to Jack polynomials

χλµ can be defined by:

sλ =
∑

µ

χλµ
pµ

zµ

By replacing Schur function sλ by the Jack polynomial J
(α)
λ , one can define

a continuous deformation Ch(α)µ of Chµ = Ch(1)µ .

We know that Ch(α)µ belongs to Vect(NG ). Explicit expression?
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Characters of symmetric group and free cumulants Application to Kerov’s polynomials

A partial result

Case α = 2 (zonal polynomials):

Theorem (F., Śniady 2010)

Let µ ⊢ k.

Ch(2)µ =
∑

M

±NG(M),

where the sum runs over rooted bipartite maps on locally oriented

surfaces with k edges and face-length µ1, µ2, . . .

=⇒ combinatorial description in terms of the Rℓ’s.
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Characters of symmetric group and free cumulants Application to Kerov’s polynomials

A partial result

Case α = 2 (zonal polynomials):

Theorem (F., Śniady 2010)

Let µ ⊢ k.

Ch(2)µ =
∑

M

±NG(M),

where the sum runs over rooted bipartite maps on locally oriented

surfaces with k edges and face-length µ1, µ2, . . .

=⇒ combinatorial description in terms of the Rℓ’s.

Conjecture for general α = 1 + β:
Maps are counted with a weight depending on β.
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End of the talk

Thanks for listening!

Any Questions?
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