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Noncommutative Probability Spaces

Definition

A noncommutative probability space is a pair (A, ϕ) where

A is a unital algebra over C.

ϕ : A → C is a unital linear functional.

Elements X ∈ A are called noncommutative random variables.

The distribution of a random variable is the linear functional
µX on polynomials formally written as ϕ(X k) =

∫
tkdµX (t).

If A is a C ∗-algebra, ϕ is a state and X is selfadjoint, then its
distribution is a probability measure on the real line.



Classical vs Free Independence

Classical Independence

A family of subalgebras Ai ⊆ A is independent if

∀i1, i2, . . . in distinct,∀Xj ∈ Aij

we have ϕ(X1 · · ·Xn) = ϕ(X1)ϕ(X2) · · ·ϕ(Xn)

Free Independence

A family of subalgebras Ai ⊆ A is free if ϕ(X1 · · ·Xn) = 0
whenever Xj ∈ Aij , ϕ(Xj) = 0, ij 6= ij+1.

In both cases the joint distribution of an independent resp. free
family is uniquely determined by the individual distributions.



Classical vs Free Convolution

Classical Free

X , Y independent X , Y free
⇓ ⇓

µX+Y = µX ∗ µY µX+Y = µX � µY

µ infinitely divisible µ infinitely divisible
m m

∀n ∃µn : µ = µn ∗ · · · ∗ µn ∀n ∃µn : µ = µn � · · ·� µn

Examples

Normal distribution Wigner semicircle law
Poisson distribution Marchenko-Pastur distribution
Cauchy distribution Cauchy distribution
Dirac distribution Dirac distribution

These are examples of the Bercovici-Pata bijection.



Classical ∩ Free Infinite Divisibility

There are a few measures which are both classically and freely
infinitely divisible:

1 Dirac distribution δx
2 Cauchy distribution dµ(x) = dx

π(1+x2)

3 1/2-free stable law (coincides with β-distribution of 2nd kind),

dβ(x) = (4x−1)1/2

x2 dx .

Theorem B-B-L-S 2008

The normal distribution is also of this kind.

What we have: analytic proof (Nevanlinna theory)
What we want: combinatorial proof



Criteria for infinite divisibility

Classical Lévy-Khinchin formula

µ is classically infinitely divisible ⇐⇒ the cumulant function
Kµ(ζ) = log Ee iζX =

∑∞
n=1

κn
n! (iζ)n has a representation

Kµ(ζ) = iγζ +

∫ (
e iζt − 1− iζt

1 + t2

)1 + t2

t2
dρ(x)

Free Lévy-Khinchin formula

µ is �-infinitely divisible ⇐⇒ the Voiculescu transform
ϕµ(z) =

∑∞
n=1 cnz

−n−1 has a representation

ϕµ(z) = γ +

∫
1 + tz

z − t
dρ(t)

The coefficients κn/cn are called the classical / free cumulants.



More criteria for infinite divisibility

Analytic criterion

A probability measure µ on the real line is �-infinitely divisible

⇐⇒

Voiculescu transform extends to an analytic function C+ → C−.

Can be used in our case!

Combinatorial criterion

A probability measure µ is classically/freely infinitely divisible
⇐⇒ the shifted sequence of classical/free cumulants (κn+2)n≥1

(resp. (cn+2)n≥1) is positive definite, i.e., can be interpreted as the
sequence of moments of some measure.

So far we were not able to exploit the combinatorial criterion,
although there are many combinatorial interpretations (see below).



Set partitions

Denote Πn the lattice of partitions of the set {1, 2, . . . , n}.
These partitions can be depicted as diagrams, e.g.,

non-connected connected

A partition is called connected if the corresponding diagram is a
connected graph. Notation: Πconn

n .

Lemma

The free cumulants can be expressed in terms of classical
cumulants

cn =
∑

π∈Πconn
n

κπ

Here as usual κπ =
∏

B∈π κ|B|.



Matchings

Corollary

The free cumulants of the normal distribution N(0, 1) are given by

cn =

{
sm if n = 2m even

0 if n is odd

Here sm =
∣∣Π(2,conn)

2m

∣∣ denotes the number of pair partitions or
matchings, i.e., partitions into blocks of size 2.

1, 1, 4, 27, 248, . . .

These numbers have been considered by Touchard, Riordan,
Stein, Wilf, Flajolet, . . .
Broadhurst/Kreimer: “rainbow approximation for anomalous
dimensions of Yukawa theory at spacetime dimension d = 4”.



A recursion

Proposition (Riordan)

The numbers sm satisfy the recursion

sn = (n − 1)
n−1∑
i=1

si sn−i

We are interested in the shifted sequence

s ′n := sn+1 =⇒ s ′n = n
n−1∑
i=0

s ′i s
′
n−1−i

Compare with Catalan numbers: Cn =
n−1∑
i=0

CiCn−1−i .

Yet the Jacobi parameters are not integers.



Trees: factorials

And now for something completely different.

Definition

Let t be a finite rooted tree. It can be decomposed into the root
o and rooted subtrees t1, t2, . . . , tk :

o

t2t1 . . . tk

We write t = t1 ∨ t2 ∨ · · · ∨ tk for the grafting of the tree.
Define the tree factorial recursively by

t! = |t| · t1! · t2! · · · tk !



Trees: factorials

Example

! = n!

Definition

Denote PRBTn the set of planar rooted binary trees with n nodes.

Proposition

s ′n =
∑

t∈PRBT n

t!

Proof: Same recursion is satisfied.



Trees: Markov chains

What is t!?

1 For general trees, n!/t! is the number of ways to grow the
tree t by successively adding vertices.

2 For t ∈ PRBT n, π(t) = 1/t! is the stationary distribution of
the move-to-root Markov chain (Dobrow/Fill).

cb

a

→

c

ba



Trees: Markov chains

It is also the stationary distribution of the Naimi-Trehel algorithm
from computer science.

Corollary ∑
t∈PRBT n

1

t!
= 1

By a well-known fact from Markov chain theory we have

Corollary

s ′n =
∑

t∈PRBT n

EtTt = Cn ET

where EtTt is the expected time of first return of the random walk
starting at t and ET is the expected time of first return to a
randomly chosen starting tree t.



Trees: Orderings

Let t be a planar rooted binary tree on n vertices.
A labeling with integers 1, 2,. . . , n is called LR-monotone or
anti-increasing if

the labels are distinct

for every vertex v , the labels on the left subtree are smaller
than the labels on the right subtree.

3

1 2

Equivalently, every antichain in the tree has increasing labels.
This is not the same as binary search trees.

Proposition

For t ∈ PRBT the number of LR-monotone labelings equals t!.



Trees: Loday-Ronco Hopf algebra

Last remarks for those who know Hopf algebras.

Product of trees

Let s = s1 ∨ s2, t = t1 ∨ t2 ∈ PRBT . Define the product

s ∗ t = s1 ∨ (s2 ∗ t) + (s ∗ t1) ∨ t2

Coproduct

∆(t) = t ⊗ |+
∑
u

u1 ∗ u2 ∗ · · · ∗ uk ⊗ u

where the sum runs over all nonempty subtrees u of t with the
same root and u1, u2,. . . ,uk are the components of the forest t \ u.

Formal linear span CPRBT becomes a graded Hopf algebra.

Homogeneous components have dimensions Cn (Catalan
numbers).



Trees: Monotone Loday-Ronco Hopf algebra

Proposition

The Loday-Ronco operations are compatible with LR-monotone
orderings. Thus CLRPRBT becomes a graded Hopf algebra
whose homogeneous components have dimensions s ′n.

Corollary

The shifted Voiculescu transform of the normal law is the Hilbert
series of the this Hopf algebra.

Q: Are there criteria when the dimension sequence of a graded
Hopf algebra is positive definite?


