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Representation theory of G,

Definition

A partition A is a finite

non-increasing sequence of positive

integers \;1 > Ao > -+ > Ag. It can

be represented by a Young diagram

A

There is a one to one correspondence between

@ irreducible representations of G ,;

e Young diagrams with n boxes.
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Character as a function on the set of Young diagrams Y:
@ Fix our favorite permutation 7 € Gy.

@ Let A\ has n boxes. For n > k we have a natural embedding
S, — &, hence we can consider 7 as an element of &,,.

o Character is a function on Y defined by:

_ TN i k<,

Xﬂ()‘) =
0 otherwise.
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Normalized character as a function on the set of Young diagrams
Y:

o Fix our favorite permutation m € G.

@ Let A has n boxes. For n > k we have a natural embedding
S, — G, hence we can consider 7w as an element of &,,.

@ Normalized character is a function on Y defined by:

n(n—l)~~(n—k+1)M if k <n,

dimension of p*

x(A) =

k factors
0 otherwise.
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Simple operations on Young diagrams

e Dilation DsA\ = (sA1,...,8A1,...,SAk,...,SAx) of A by s.

s factors s factors
9 9
8 8
7 7
¢ A= Do) ¢
4 4
3 3
2 2
1 1
12345678910 12345678910
@ «-anisotropic Young diagram aX = (a), ..., a\k).
5 5
: A= 3\ :
1 1

12345678910 12345678910
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Polynomial functions on Y

Other functions on the set of Young diagrams

@ Free cumulants Ry () are relatively simple functions given by

i 1
Re(A) = lim —%qa x-1)(DsA);

s—oo sk

Advantages: good approximation of normalized characters:
Re(A) = Z(2..k—1)(A);
e Fundamental functionals of shape Sk(\) given by

Sk(A)=(k—-1) /( )e)\(x — y)ki2 dx dy

gives an information about the shape of A\. Advantages: very
useful and powerful in differential calculus on Y

@ Jack characters are functions with additional parameter o
(related to a-anisotropic Young diagrams). They generalize
normalized characters and they are quite mysterious.
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Polynomial functions on Y

Relations between them

@ They generate the same algebra P of polynomial functions on
Y (studied by Kerov and Olshanski);

e P is isomorphic to subalgebra of partial permutations - related
to computing connection coefficients or studying multiplication
of conjugacy classes in the symmetric groups;

@ P is isomorphic to algebra of shifted symmetric functions -
related to studying problems from symmetric functions theory;
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@ Let G be a bipartite graph.
o Let V =V, LIV, be a set of vertices.
@ Any function h: V — N is called a coloring of a graph G.

@ A coloring h is compatible with Young diagram \ if
(h(v1), h(v2)) € X whenever (vi,v2) € Vo x V, is an edge in G.
e We will define a function Ng(A) as a number of colorings of G
which are compatible with .

V.

Let us show some examples:
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Applications

@ We can express normalized characters in terms of coloring of
bipartite graphs:

¥, = S (1)l
M

where the summation is over all labeled bipartite oriented
maps with the face type p.

@ We can express any polynomial function in terms of coloring of
bipartite graphs!
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Main theorem

Theorem (D., Sniady)
Let G be a linear combination of bipartite graphs such that

(Ox + 8,) 9.G = 0.

Then X\ — Ng(\) is a polynomial function on the set of Young
diagrams.

Z(_l)lVo(M)l N, (1)

M

where the summation is over all labeled bipartite oriented maps
with the face type i is a polynomial function on Y.
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Main theorem

Theorem (D., Sniady)
Let G be a linear combination of bipartite graphs such that

(Ox + 0,) 0,G = 0.

Then X\ — Ng(X) is a polynomial function on the set of Young
diagrams.

D (Ol (1)

M

where the summation is over all (not only oriented) labeled
bipartite maps with the face type u is a polynomial function on Y.
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Proof of the corollary

Proof.

By the Main Theorem it suffices to show that
(Ox + 0y)0 (- (—1)IVeMIIAL) = 0. Let us look at Oy:

We can do the same with d, by the symmetry. These two
procedures are inverses of each other. O
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Young diagrams as functions

We want to make a differential calculus on Y.

Problem
Young diagrams are very discrete.
We can define generalized Young diagrams as continous objects!

Definition

A generalized Young diagram is a function w : Ry — R such that:

o |w(z1) — w(z2)| < |z1 — z2| (Lipschitz with constant 1),

o w(z) = |z| if |z] is large enough.
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Content-derivative

Let F be a function on Y.

Problem

How quickly the value of F(\) would change if we change the shape
of A by adding infinitesimal boxes with content equal to z = zy7?

Content-derivative Oc, F(\) will measure it!
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Details of the proof

Let G be a bipartite graph and G be a linear combination of
bipartite graphs. Then:

0 9c,Ng(A) = Na,6 (M),
o L0c,No(N) = LNy 0,6(N) + LNy 50,6(N),

o £0c,Ng(N) = 3N(o,a,)0.6
di

a7 0c:Ng() = Mo, —o, 0,61
z — 0¢c,Ng()) is polynomial,
[2510c,Ng(\) is a polynomial function on Y,

Ng(\) is a polynomial function on Y.
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symmetric functions theory. They are characterized by three
conditions:
° J,(f‘)(,u) # 0 and for each Young diagram \ # u such that
I\l < |u| we have S (A) = 0;
° J/Sa) has degree equal to |u| (regarded as a shifted symmetric
function);

@ The function \ — Jl([l) (é)\) is a polynomial function.
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Characterization of Jack shifted symmetric functions

Jack shifted symmetric functions J,(ﬁ) with parameter & came from

symmetric functions theory. They are characterized by three
conditions:
° J,(f‘)(,u) # 0 and for each Young diagram \ # u such that
I\l < |u| we have S (A) = 0;
° J/Sa) has degree equal to |u| (regarded as a shifted symmetric
function);
@ The function \ — Jl([l) (é)\) is a polynomial function.
Jack characters £%%) are given by:

J) =" Al () TN,
|l



Jack characters
oeo

What do we know and what we don't

Characterization of Jack shifted symmetric functions

o Jack characters generalize normalized characters:

(N =P



Jack characters
oeo

What do we know and what we don't

Characterization of Jack shifted symmetric functions

o Jack characters generalize normalized characters:
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@ How to express Jack characters in terms of N¢g7
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Characterization of Jack shifted symmetric functions

@ Jack characters generalize normalized characters:

.\ =P

@ How to express Jack characters in terms of Ng7

@ For some « first two conditions are easy to verify.

Theorem (Féray, Sniady)

S = $(—1) -Vl
M

where the summation is over all labeled bipartite oriented maps
with the face type L,
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Characterization of Jack shifted symmetric functions

@ Jack characters generalize normalized characters:

(N = TP

@ How to express Jack characters in terms of Ng?

@ For some « first two conditions are easy to verify.

Theorem (Féray, Sniady)

_( 1) Z 2)VeMIl

where the summation is over a// labeled bipartite (not only
oriented) maps with the face type L.
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Open question

@ Ng()) is a number of colorings of vertices of G (by natural
numbers) which are compatible with \.
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such that whenever e; Ne; € V, (V, resp.), then h(e;) and
h(ep) are in the same column (row resp.) of A.
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Open question

@ Ng() is a number of colorings of edges of G (by boxes of \)
such that whenever e; Ne; € V,, (V, resp.), then h(e;) and
h(ey) are in the same column (row resp.) of A.

o Let Ng()) is a number of injective colorings of edges of G as
above.
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Open question

@ Ng(\) is a number of colorings of edges of G (by boxes of \)
such that whenever e; Ne; € V,, (V, resp.), then h(er) and
h(ey) are in the same column (row resp.) of A.

o Let Ng()\) is a number of injective colorings of edges of G as
above.

@ We have that:
Z( )\Vo M) Ny = Z \Vo M)| NM
M

where the summation is over all labeled bipartite oriented
maps with the face type p,
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Open question

@ Ng() is a number of colorings of edges of G (by boxes of \)
such that whenever e; Ne; € V, (V, resp.), then h(e;) and
h(ey) are in the same column (row resp.) of .

o Let Ng()) is a number of injective colorings of edges of G as
above.

@ We have that:

Z( 2)IVeMII Ny = Z 2)IVeMII

M

where the summation is over all labeled bipartite (not only
oriented) maps with the face type .
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Open question

@ Ng(A) is a number of colorings of edges of G (by boxes of \)
such that whenever e; Nex € V,, (V, resp.), then h(e;) and
h(ez) are in the same column (row resp.) of A.

o Let Ng(\) is a number of injective colorings of edges of G as
above.

For which polynomials foq € Q[x] we have

Z( )\Vo(M)I e Z( ) IVo M) e )

M

foralla e Ry 7
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