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Normalized characters

Representation theory of Sn

De�nition

A partition λ is a �nite
non-increasing sequence of positive
integers λ1 ≥ λ2 ≥ · · · ≥ λk . It can
be represented by a Young diagram
λ.

Fact

There is a one to one correspondence between

irreducible representations of Sn;

Young diagrams with n boxes.
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Normalized characters

Character as a function on the set of Young diagrams Y:
Fix our favorite permutation π ∈ Sk .

Let λ has n boxes. For n ≥ k we have a natural embedding
Sk ↪→ Sn hence we can consider π as an element of Sn.

Character is a function on Y de�ned by:

χπ(λ) =


n(n − 1) · · · (n − k + 1)︸ ︷︷ ︸

k factors

Tr(ρλ(π))

dimension of ρλ
if k ≤ n,

0 otherwise.
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Normalized character as a function on the set of Young diagrams
Y:

Fix our favorite permutation π ∈ Sk .

Let λ has n boxes. For n ≥ k we have a natural embedding
Sk ↪→ Sn hence we can consider π as an element of Sn.
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Polynomial functions on Y

Simple operations on Young diagrams

Dilation Dsλ = (sλ1, . . . , sλ1︸ ︷︷ ︸
s factors

, . . . , sλk , . . . , sλk︸ ︷︷ ︸
s factors

) of λ by s.

1 2 3 4 5 6 7 8 910

1
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7
8
9

λ 7→ D2λ

1 2 3 4 5 6 7 8 910

1
2
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4
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6
7
8
9

α-anisotropic Young diagram αλ = (αλ1, . . . , αλk).

1 2 3 4 5 6 7 8 910

1
2
3
4
5

λ 7→ 3λ

1 2 3 4 5 6 7 8 910

1
2
3
4
5
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Polynomial functions on Y

Other functions on the set of Young diagrams

Free cumulants Rk(λ) are relatively simple functions given by

Rk(λ) = lim
s→∞

1
sk

Σ(12...k−1)(Dsλ);

Advantages: good approximation of normalized characters:
Rk(λ) ≈ Σ(12...k−1)(λ);

Fundamental functionals of shape Sk(λ) given by

Sk(λ) = (k − 1)

∫∫
(x ,y)∈λ

(x − y)k−2 dx dy

gives an information about the shape of λ. Advantages: very
useful and powerful in di�erential calculus on Y
Jack characters are functions with additional parameter α
(related to α-anisotropic Young diagrams). They generalize
normalized characters and they are quite mysterious.
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Polynomial functions on Y

Relations between them

They generate the same algebra P of polynomial functions on
Y (studied by Kerov and Olshanski);

P is isomorphic to subalgebra of partial permutations - related
to computing connection coe�cients or studying multiplication
of conjugacy classes in the symmetric groups;

P is isomorphic to algebra of shifted symmetric functions -
related to studying problems from symmetric functions theory;
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Number of colorings

De�nition

Let G be a bipartite graph.

Let V = V◦ t V• be a set of vertices.

Any function h : V → N is called a coloring of a graph G .

A coloring h is compatible with Young diagram λ if
(h(v1), h(v2)) ∈ λ whenever (v1, v2) ∈ V◦×V• is an edge in G .

We will de�ne a function NG (λ) as a number of colorings of G
which are compatible with λ.

Let us show some examples:
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Examples

Example

Let G = . Then NG (λ) =
∑
λi =

∑
λ′i = |λ|.

Let G = . Then NG (λ) =
∑
λ′2i .

Let G = . Then NG (λ) =
∑
λ2i .
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Bipartite maps

De�nition

A labeled (bipartite) graph drawn on a surface - (bipartite) map. If
this surface is orientable and its orientation is �xed, then the
underlying map is called oriented; otherwise the map is unoriented.
We will always assume that the surface is minimal.
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De�nition
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De�nition
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De�nition
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Number of colorings

Applications

We can express normalized characters in terms of coloring of
bipartite graphs:

Σµ =
∑
M

(−1)|µ|−|V◦(M)| NM,

where the summation is over all labeled bipartite oriented
maps with the face type µ.

We can express any polynomial function in terms of coloring of
bipartite graphs!
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Derivatives of bipartite graphs
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Let G be a bipartite graph:

∂zG =

∂x(G , z) =

∂y (G , z) =
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Derivatives of bipartite graphs

Main theorem

Theorem (D., �niady)

Let G be a linear combination of bipartite graphs such that

(∂x + ∂y ) ∂zG = 0.

Then λ 7→ NG(λ) is a polynomial function on the set of Young

diagrams.

Corollary ∑
M

(−1)|V◦(M)| NM, (1)

where the summation is over all labeled bipartite maps with the

face type µ is a polynomial function on Y.
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Derivatives of bipartite graphs

Main theorem

Theorem (D., �niady)

Let G be a linear combination of bipartite graphs such that

(∂x + ∂y ) ∂zG = 0.

Then λ 7→ NG(λ) is a polynomial function on the set of Young

diagrams.

Corollary ∑
M

(−1)|V◦(M)| NM, (1)

where the summation is over all (not only oriented) labeled

bipartite maps with the face type µ is a polynomial function on Y.
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Derivatives of bipartite graphs

Proof of the corollary

Proof.

By the Main Theorem it su�ces to show that
(∂x + ∂y )∂z

(∑
M(−1)|V◦(M)|M

)
= 0. Let us look at ∂x :

We can do the same with ∂y by the symmetry. These two
procedures are inverses of each other.
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Generalized Young diagrams

Two conventions of drawing Young diagrams

Conventions of drawing Young diagrams:

French convention:
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Russian convention:
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Generalized Young diagrams

Young diagrams as functions

We want to make a di�erential calculus on Y.

Problem

Young diagrams are very discrete.

Solution

We can de�ne generalized Young diagrams as continous objects!

De�nition

A generalized Young diagram is a function ω : R+ → R such that:

|ω(z1)− ω(z2)| ≤ |z1 − z2| (Lipschitz with constant 1),

ω(z) = |z | if |z | is large enough.
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Content-derivative

Content-derivative

Let F be a function on Y.

Problem

How quickly the value of F (λ) would change if we change the shape

of λ by adding in�nitesimal boxes with content equal to z = z0?
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Content-derivative

Content-derivative

Let F be a function on Y.

Problem

How quickly the value of F (λ) would change if we change the shape

of λ by adding in�nitesimal boxes with content equal to z = z0?

Solution

Content-derivative ∂Cz
F (λ) will measure it!
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Di�erential calculus on Y and bipartite graphs

Details of the proof

Proof.

Let G be a bipartite graph and G be a linear combination of
bipartite graphs. Then:

∂Cz
NG (λ) = N∂zG (λ),

d
dz
∂Cz

NG (λ) = ω′(z)+1
2

N∂x∂zG (λ) + ω′(z)−1
2

N∂y∂zG (λ),
d
dz
∂Cz

NG(λ) = 1
2
N(∂x−∂y )∂zG ,

d i

dz i
∂Cz

NG(λ) = 1
2i
N(∂x−∂y )i∂zG ,

z 7→ ∂Cz
NG(λ) is polynomial,

[zk ]∂Cz
NG(λ) is a polynomial function on Y,

NG(λ) is a polynomial function on Y.
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What do we know and what we don't

Characterization of Jack shifted symmetric functions

Jack shifted symmetric functions J(α)µ with parameter α came from
symmetric functions theory. They are characterized by three
conditions:

J
(α)
µ (µ) 6= 0 and for each Young diagram λ 6= µ such that

|λ| ≤ |µ| we have J
(α)
µ (λ) = 0;

J
(α)
µ has degree equal to |µ| (regarded as a shifted symmetric
function);

The function λ 7→ J
(α)
µ

(
1
αλ
)
is a polynomial function.

Jack characters Σ
(α)
π are given by:

J(α)µ (λ) =
∑
π`|µ|

n(α)π Σ(α)
π (µ) Σ(α)

π (λ).
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Jack shifted symmetric functions J(α)µ with parameter α came from
symmetric functions theory. They are characterized by three
conditions:

J
(α)
µ (µ) 6= 0 and for each Young diagram λ 6= µ such that

|λ| ≤ |µ| we have J
(α)
µ (λ) = 0;

J
(α)
µ has degree equal to |µ| (regarded as a shifted symmetric
function);

The function λ 7→ J
(α)
µ

(
1
αλ
)
is a polynomial function.

Jack characters Σ
(α)
π are given by:

J(α)µ (λ) =
∑
π`|µ|

n(α)π Σ(α)
π (µ) Σ(α)

π (λ).



Functions on Y Bipartite graphs Di�erential calculus Relations Jack characters

What do we know and what we don't

Characterization of Jack shifted symmetric functions

Jack shifted symmetric functions J(α)µ with parameter α came from
symmetric functions theory. They are characterized by three
conditions:

J
(α)
µ (µ) 6= 0 and for each Young diagram λ 6= µ such that

|λ| ≤ |µ| we have J
(α)
µ (λ) = 0;

J
(α)
µ has degree equal to |µ| (regarded as a shifted symmetric
function);

The function λ 7→ J
(α)
µ

(
1
αλ
)
is a polynomial function.

Jack characters Σ
(α)
π are given by:

J(α)µ (λ) =
∑
π`|µ|

n(α)π Σ(α)
π (µ) Σ(α)

π (λ).



Functions on Y Bipartite graphs Di�erential calculus Relations Jack characters

What do we know and what we don't

Characterization of Jack shifted symmetric functions

Jack shifted symmetric functions J(α)µ with parameter α came from
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|λ| ≤ |µ| we have J
(α)
µ (λ) = 0;

J
(α)
µ has degree equal to |µ| (regarded as a shifted symmetric
function);

The function λ 7→ J
(α)
µ

(
1
αλ
)
is a polynomial function.

Jack characters Σ
(α)
π are given by:

J(α)µ (λ) =
∑
π`|µ|

n(α)π Σ(α)
π (µ) Σ(α)

π (λ).
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Characterization of Jack shifted symmetric functions

Jack characters generalize normalized characters:

Σπ(λ) = Σ(1)
π (λ)

How to express Jack characters in terms of NG?

For some α �rst two conditions are easy to verify.

Theorem (Féray, �niady)
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What do we know and what we don't

Characterization of Jack shifted symmetric functions

Jack characters generalize normalized characters:

Σπ(λ) = Σ(1)
π (λ)

How to express Jack characters in terms of NG?

For some α �rst two conditions are easy to verify.

Theorem (Féray, �niady)

Σ(1)
µ =

∑
M

(−1)|µ|−|V◦(M)| NM,

where the summation is over all labeled bipartite oriented maps

with the face type µ,
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What do we know and what we don't

Characterization of Jack shifted symmetric functions

Jack characters generalize normalized characters:

Σπ(λ) = Σ(1)
π (λ)

How to express Jack characters in terms of NG?

For some α �rst two conditions are easy to verify.

Theorem (Féray, �niady)

Σ(2)
µ = (−1)|µ|

∑
M

(−2)|V◦(M)| NM,

where the summation is over all labeled bipartite (not only

oriented) maps with the face type µ.
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What do we know and what we don't

Open question

NG (λ) is a number of colorings of vertices of G (by natural
numbers) which are compatible with λ.
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NG (λ) is a number of colorings of edges of G (by boxes of λ)
such that whenever e1 ∩ e2 ∈ V◦ (V• resp.), then h(e1) and
h(e2) are in the same column (row resp.) of λ.
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NG (λ) is a number of colorings of edges of G (by boxes of λ)
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h(e2) are in the same column (row resp.) of λ.

Let ÑG (λ) is a number of injective colorings of edges of G as
above.
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Open question

NG (λ) is a number of colorings of edges of G (by boxes of λ)
such that whenever e1 ∩ e2 ∈ V◦ (V• resp.), then h(e1) and
h(e2) are in the same column (row resp.) of λ.

Let ÑG (λ) is a number of injective colorings of edges of G as
above.

We have that:∑
M

(−1)|V◦(M)| NM =
∑
M

(−1)|V◦(M)| ÑM

where the summation is over all labeled bipartite oriented
maps with the face type µ,
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Open question

NG (λ) is a number of colorings of edges of G (by boxes of λ)
such that whenever e1 ∩ e2 ∈ V◦ (V• resp.), then h(e1) and
h(e2) are in the same column (row resp.) of λ.

Let ÑG (λ) is a number of injective colorings of edges of G as
above.

We have that:∑
M

(−2)|V◦(M)| NM =
∑
M

(−2)|V◦(M)| ÑM

where the summation is over all labeled bipartite (not only
oriented) maps with the face type µ.
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What do we know and what we don't

Open question

NG (λ) is a number of colorings of edges of G (by boxes of λ)
such that whenever e1 ∩ e2 ∈ V◦ (V• resp.), then h(e1) and
h(e2) are in the same column (row resp.) of λ.

Let ÑG (λ) is a number of injective colorings of edges of G as
above.

Problem

For which polynomials fM ∈ Q[x ] we have∑
M

(−α)|V◦(M)| fM(α)NM =
∑
M

(−α)|V◦(M)| fM(α)ÑM

for all α ∈ R+?
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