Functions on ¥	Bipartite graphs	Differential calculus	Relations	Jack characters
00000	0000000	000	0	000

Colorings of bipartite graphs and polynomial functions on the set of Young diagrams (joint work with Piotr Śniady)

Maciej Dołęga

Uniwersytet Wrocławski

Bialgebras in Free Probability, Wien 2011

Functions on ¥	Bipartite graphs	Differential calculus	Relations	Jack characters
●0000	0000000	000	0	000
Normalized characters				

Definition

A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ .

・ロト ・ 日本 ・ 日本 ・ 日本

Fact

- irreducible representations of 𝔅_n;
- Young diagrams with n boxes.

Functions on ⊻ ●0000	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 000
Normalized characters				

Definition

A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ .

・ロト ・個ト ・ヨト ・ヨト 三日

Fact

- irreducible representations of 𝔅_n;
- Young diagrams with n boxes.

Functions on ⊻ ●0000	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 000
Normalized characters				

Definition

A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ .

・ロト ・個ト ・ヨト ・ヨト 三日

Fact

- irreducible representations of 𝔅_n;
- Young diagrams with n boxes.

Functions on ¥	Bipartite graphs	Differential calculus	Relations	Jack characters
●0000	0000000	000	0	000
Normalized characters				

Definition

A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ .

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Fact

- irreducible representations of 𝔅_n;
- Young diagrams with n boxes.

Functions on ⊻ ●0000	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 000
Normalized characters				

Definition

A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ .

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Fact

- irreducible representations of \mathfrak{S}_n ;
- Young diagrams with n boxes.

Functions on ⊻ ●0000	Bip a	artite graphs		Differential calculus 000	Relations 0	Jack characters 000
Normalized characters						

Definition

A partition λ is a finite non-increasing sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. It can be represented by a Young diagram λ .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Fact

- irreducible representations of \mathfrak{S}_n ;
- Young diagrams with n boxes.

Functions on ¥ o●○○○	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 000
Normalized characters				
Normalized	characters			

Character as a function on the set of Young diagrams \mathbb{Y} :

- Fix our favorite permutation $\pi \in \mathfrak{S}_k$.
- Let λ has n boxes. For $n \ge k$ we have a natural embedding $\mathfrak{S}_k \hookrightarrow \mathfrak{S}_n$ hence we can consider π as an element of \mathfrak{S}_n .
- Character is a function on $\mathbb Y$ defined by:

$$\chi_{\pi}(\lambda) = \begin{cases} \underbrace{n(n-1)\cdots(n-k+1)}_{k \text{ factors}} \frac{\operatorname{Tr}(\rho^{\lambda}(\pi))}{\text{dimension of } \rho^{\lambda}} & \text{if } k \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Functions on ¥ ⊙●○○○	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 000
Normalized characters				
Normalized	characters			

Character as a function on the set of Young diagrams $\mathbb Y$:

- Fix our favorite permutation $\pi \in \mathfrak{S}_k$.
- Let λ has n boxes. For $n \ge k$ we have a natural embedding $\mathfrak{S}_k \hookrightarrow \mathfrak{S}_n$ hence we can consider π as an element of \mathfrak{S}_n .
- Character is a function on $\mathbb Y$ defined by:

$$\chi_{\pi}(\lambda) = \begin{cases} \underbrace{n(n-1)\cdots(n-k+1)}_{k \text{ factors}} \frac{\operatorname{Tr}(\rho^{\lambda}(\pi))}{\text{dimension of } \rho^{\lambda}} & \text{if } k \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Functions on ¥ 0●000	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 000
Normalized characters				
Normalized	characters			

Character as a function on the set of Young diagrams $\mathbb Y\colon$

- Fix our favorite permutation $\pi \in \mathfrak{S}_k$.
- Let λ has n boxes. For $n \ge k$ we have a natural embedding $\mathfrak{S}_k \hookrightarrow \mathfrak{S}_n$ hence we can consider π as an element of \mathfrak{S}_n .
- \bullet Character is a function on $\mathbb {Y}$ defined by:

$$\chi_{\pi}(\lambda) = \begin{cases} \underbrace{n(n-1)\cdots(n-k+1)}_{k \text{ factors}} \frac{\operatorname{Tr}(\rho^{\lambda}(\pi))}{\operatorname{dimension of } \rho^{\lambda}} & \text{if } k \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

Functions on ¥ o●ooo	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 000
Normalized characters				
Normalized	characters			

Character as a function on the set of Young diagrams $\mathbb Y\colon$

- Fix our favorite permutation $\pi \in \mathfrak{S}_k$.
- Let λ has n boxes. For $n \ge k$ we have a natural embedding $\mathfrak{S}_k \hookrightarrow \mathfrak{S}_n$ hence we can consider π as an element of \mathfrak{S}_n .
- Character is a function on $\mathbb Y$ defined by:

$$\chi_{\pi}(\lambda) = \begin{cases} \underbrace{n(n-1)\cdots(n-k+1)}_{k \text{ factors}} \frac{\operatorname{Tr}(\rho^{\lambda}(\pi))}{\operatorname{dimension of } \rho^{\lambda}} & \text{if } k \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

Functions on ¥ 0●000	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 000
Normalized characters				
Normalized of	characters			

Normalized character as a function on the set of Young diagrams \mathbb{Y} :

- Fix our favorite permutation $\pi \in \mathfrak{S}_k$.
- Let λ has n boxes. For $n \ge k$ we have a natural embedding $\mathfrak{S}_k \hookrightarrow \mathfrak{S}_n$ hence we can consider π as an element of \mathfrak{S}_n .
- Normalized character is a function on $\mathbb Y$ defined by:

$$\Sigma_{\pi}(\lambda) = \begin{cases} \underbrace{n(n-1)\cdots(n-k+1)}_{k \text{ factors}} \frac{\operatorname{Tr}(\rho^{\lambda}(\pi))}{\operatorname{dimension of } \rho^{\lambda}} & \text{if } k \leq n, \\ 0 & \text{otherwise.} \end{cases}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

・ロト ・ 日本 ・ 日本 ・ 日本

ж

Functions on ¥	Bipartite graphs	Differential calculus	Relations	Jack characters
00000				
Polynomial functions on $\mathbb Y$				

• Free cumulants $R_k(\lambda)$ are relatively simple functions given by

$$R_k(\lambda) = \lim_{s\to\infty} \frac{1}{s^k} \Sigma_{(12\dots k-1)}(D_s\lambda);$$

Advantages: good approximation of normalized characters: $R_k(\lambda) pprox \Sigma_{(12...k-1)}(\lambda);$

• Fundamental functionals of shape $S_k(\lambda)$ given by

$$S_k(\lambda) = (k-1) \iint_{(x,y)\in\lambda} (x-y)^{k-2} dx dy$$

gives an information about the shape of $\lambda.$ Advantages: very useful and powerful in differential calculus on $\mathbb Y$

Functions on ¥	Bipartite graphs	Differential calculus	Relations	Jack characters
Polynomial functions on	Y			000

• Free cumulants $R_k(\lambda)$ are relatively simple functions given by

$$R_k(\lambda) = \lim_{s \to \infty} \frac{1}{s^k} \Sigma_{(12...k-1)}(D_s \lambda);$$

Advantages: good approximation of normalized characters: $R_k(\lambda) \approx \Sigma_{(12...k-1)}(\lambda);$

• Fundamental functionals of shape $S_k(\lambda)$ given by

$$S_k(\lambda) = (k-1) \iint_{(x,y)\in\lambda} (x-y)^{k-2} dx dy$$

gives an information about the shape of $\lambda.$ Advantages: very useful and powerful in differential calculus on $\mathbb Y$

Functions on ¥	Bipartite graphs	Differential calculus	Relations	Jack characters
Polynomial functions on	Y			000

• Free cumulants $R_k(\lambda)$ are relatively simple functions given by

$$R_k(\lambda) = \lim_{s\to\infty} \frac{1}{s^k} \Sigma_{(12\dots k-1)}(D_s\lambda);$$

Advantages: good approximation of normalized characters: $R_k(\lambda) \approx \Sigma_{(12...k-1)}(\lambda);$

• Fundamental functionals of shape $S_k(\lambda)$ given by

$$S_k(\lambda) = (k-1) \iint_{(x,y)\in\lambda} (x-y)^{k-2} dx dy$$

gives an information about the shape of $\lambda.$ Advantages: very useful and powerful in differential calculus on $\mathbb Y$

Functions on ¥	Bipartite graphs	Differential calculus	Relations	Jack characters
00000				
Polynomial functions on	Y			

• Free cumulants $R_k(\lambda)$ are relatively simple functions given by

$$R_k(\lambda) = \lim_{s \to \infty} \frac{1}{s^k} \Sigma_{(12...k-1)}(D_s \lambda);$$

Advantages: good approximation of normalized characters: $R_k(\lambda) \approx \Sigma_{(12...k-1)}(\lambda);$

• Fundamental functionals of shape $S_k(\lambda)$ given by

$$S_k(\lambda) = (k-1) \iint_{(x,y)\in\lambda} (x-y)^{k-2} dx dy$$

gives an information about the shape of λ . Advantages: very useful and powerful in differential calculus on \mathbb{Y}

Functions on ¥ ००००●	Bipartite graphs 0000000	Differential calculus 000	Relations O	Jack characters 000
Polynomial functions	on Y			
Relations b	etween them			

- \mathcal{P} is isomorphic to subalgebra of partial permutations related to computing connection coefficients or studying multiplication of conjugacy classes in the symmetric groups;
- \mathcal{P} is isomorphic to algebra of shifted symmetric functions related to studying problems from symmetric functions theory;

Functions on ¥ 0000●	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 000		
Polynomial functions on $\mathbb Y$						
Relations b	etween them					

- \mathcal{P} is isomorphic to subalgebra of partial permutations related to computing connection coefficients or studying multiplication of conjugacy classes in the symmetric groups;
- \mathcal{P} is isomorphic to algebra of shifted symmetric functions related to studying problems from symmetric functions theory;

Functions on ¥ ○○○○●	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 000
Polynomial functions o	n Y			
Relations be	etween them			

- \mathcal{P} is isomorphic to subalgebra of partial permutations related to computing connection coefficients or studying multiplication of conjugacy classes in the symmetric groups;
- \mathcal{P} is isomorphic to algebra of shifted symmetric functions related to studying problems from symmetric functions theory;

ション ふゆ く 山 マ チャット しょうくしゃ

Functions on ¥ ○○○○●	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 000
Polynomial functions o	n Y			
Relations be	etween them			

- \mathcal{P} is isomorphic to subalgebra of partial permutations related to computing connection coefficients or studying multiplication of conjugacy classes in the symmetric groups;
- \mathcal{P} is isomorphic to algebra of shifted symmetric functions related to studying problems from symmetric functions theory;

ション ふゆ く 山 マ チャット しょうくしゃ

Functions on ¥ 00000	Bipartite graphs ●000000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Number of	colorings			

- Let G be a bipartite graph.
- Let $V = V_{\circ} \sqcup V_{\bullet}$ be a set of vertices.
- Any function $h: V \to \mathbb{N}$ is called a coloring of a graph G.
- A coloring h is compatible with Young diagram λ if (h(v₁), h(v₂)) ∈ λ whenever (v₁, v₂) ∈ V_o × V_o is an edge in G.
- We will define a function N_G(λ) as a number of colorings of G which are compatible with λ.

Functions on ¥ 00000	Bipartite graphs ●000000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Number of	colorings			

- Let G be a bipartite graph.
- Let $V = V_{\circ} \sqcup V_{\bullet}$ be a set of vertices.
- Any function $h: V \to \mathbb{N}$ is called a coloring of a graph G.
- A coloring h is compatible with Young diagram λ if (h(v₁), h(v₂)) ∈ λ whenever (v₁, v₂) ∈ V_o × V_o is an edge in G.
- We will define a function N_G(λ) as a number of colorings of G which are compatible with λ.

Functions on ¥ 00000	Bipartite graphs ●000000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Number of	colorings			

- Let G be a bipartite graph.
- Let $V = V_{\circ} \sqcup V_{\bullet}$ be a set of vertices.
- Any function $h: V \to \mathbb{N}$ is called a coloring of a graph G.
- A coloring h is compatible with Young diagram λ if $(h(v_1), h(v_2)) \in \lambda$ whenever $(v_1, v_2) \in V_{\circ} \times V_{\bullet}$ is an edge in G.
- We will define a function N_G(λ) as a number of colorings of G which are compatible with λ.

Functions on ¥ 00000	Bipartite graphs ●000000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Number of	colorings			

- Let G be a bipartite graph.
- Let $V = V_{\circ} \sqcup V_{\bullet}$ be a set of vertices.
- Any function $h: V \to \mathbb{N}$ is called a coloring of a graph G.
- A coloring h is compatible with Young diagram λ if (h(v₁), h(v₂)) ∈ λ whenever (v₁, v₂) ∈ V_o × V_o is an edge in G.
- We will define a function N_G(λ) as a number of colorings of G which are compatible with λ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Functions on ¥ 00000	Bipartite graphs ●000000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Number of	colorings			

- Let G be a bipartite graph.
- Let $V = V_{\circ} \sqcup V_{\bullet}$ be a set of vertices.
- Any function $h: V \to \mathbb{N}$ is called a coloring of a graph G.
- A coloring h is compatible with Young diagram λ if (h(v₁), h(v₂)) ∈ λ whenever (v₁, v₂) ∈ V_o × V_• is an edge in G.
- We will define a function N_G(λ) as a number of colorings of G which are compatible with λ.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Functions on ¥ 00000	Bipartite graphs ●000000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Number of	colorings			

- Let G be a bipartite graph.
- Let $V = V_{\circ} \sqcup V_{\bullet}$ be a set of vertices.
- Any function $h: V \to \mathbb{N}$ is called a coloring of a graph G.
- A coloring h is compatible with Young diagram λ if (h(v₁), h(v₂)) ∈ λ whenever (v₁, v₂) ∈ V_o × V_• is an edge in G.
- We will define a function $N_G(\lambda)$ as a number of colorings of G which are compatible with λ .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Functions on ¥ 00000	Bipartite graphs ●000000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Number of	colorings			

- Let G be a bipartite graph.
- Let $V = V_{\circ} \sqcup V_{\bullet}$ be a set of vertices.
- Any function $h: V \to \mathbb{N}$ is called a coloring of a graph G.
- A coloring h is compatible with Young diagram λ if (h(v₁), h(v₂)) ∈ λ whenever (v₁, v₂) ∈ V_o × V_• is an edge in G.
- We will define a function $N_G(\lambda)$ as a number of colorings of G which are compatible with λ .

ション ふゆ く 山 マ チャット しょうくしゃ

Functions on ¥ 00000	Bipartite graphs 0●00000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Ŭ				
Evamples				
LAINPIES				

Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Functions on ¥ 00000	Bipartite graphs 0●00000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
-				
Examples				
E/(annpros				

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで
Functions on ¥ 00000	Bipartite graphs 0●00000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
-				
Examples				
E/(annpros				

Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations O	Jack characters 000
Number of colorings				
Bipartite ma	ips			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations O	Jack characters 000
Number of colorings				
Bipartite ma	ips			

A labeled (bipartite) graph drawn on a surface - (bipartite) map. If this surface is orientable and its orientation is fixed, then the underlying map is called oriented; otherwise the map is unoriented. We will always assume that the surface is minimal.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

3

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite m	aps			

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite m	aps			

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite m	aps			

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite m	aps			

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite m	aps			

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite ma	aps			

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite ma	aps			

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite m	aps			

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite m	aps			

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite ma	aps			

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite ma	aps			

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite ma	aps			

A labeled (bipartite) graph drawn on a surface - (bipartite) map. If this surface is orientable and its orientation is fixed, then the underlying map is called oriented; otherwise the map is unoriented. We will always assume that the surface is minimal.

・ロト ・ 聞 ト ・ 思 ト ・ ヨ ト

Functions on ¥ 00000	Bipartite graphs 00●0000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Bipartite ma	aps			

A labeled (bipartite) graph drawn on a surface - (bipartite) map. If this surface is orientable and its orientation is fixed, then the underlying map is called oriented; otherwise the map is unoriented. We will always assume that the surface is minimal.

・ロト ・個ト ・ヨト ・ヨト

Functions on ¥ 00000	Bipartite graphs 000●000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Applications				

$$\Sigma_{\mu} = \sum_{\mathcal{M}} (-1)^{|\mu| - |V_{\circ}(\mathcal{M})|} N_{\mathcal{M}},$$

where the summation is over all labeled bipartite oriented maps with the face type $\mu.$

• We can express any polynomial function in terms of coloring of bipartite graphs!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Functions on ¥ 00000	Bipartite graphs 000●000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Applications				

$$\Sigma_{\mu} = \sum_{\mathcal{M}} (-1)^{|\mu| - |V_{\circ}(\mathcal{M})|} N_{\mathcal{M}},$$

where the summation is over all labeled bipartite oriented maps with the face type μ .

• We can express any polynomial function in terms of coloring of bipartite graphs!

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Functions on ¥ 00000	Bipartite graphs 000●000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Applications				

$$\Sigma_{\mu} = \sum_{\mathcal{M}} (-1)^{|\mu| - |V_{\circ}(\mathcal{M})|} \ \textit{N}_{\mathcal{M}},$$

where the summation is over all labeled bipartite oriented maps with the face type μ .

• We can express any polynomial function in terms of coloring of bipartite graphs!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Functions on ¥ 00000	Bipartite graphs 000●000	Differential calculus 000	Relations 0	Jack characters 000
Number of colorings				
Applications				

$$\Sigma_{\mu} = \sum_{\mathcal{M}} (-1)^{|\mu| - |V_{\circ}(\mathcal{M})|} \ \textit{N}_{\mathcal{M}},$$

where the summation is over all labeled bipartite oriented maps with the face type μ .

• We can express any polynomial function in terms of coloring of bipartite graphs!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Functions on ¥ 00000	Bipartite graphs ○○○○●○○	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Definitions					

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Functions on ¥ 00000	Bipartite graphs 0000●00	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Definitions					

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Functions on ¥ 00000	Bipartite graphs ○○○○●○○	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Definitions					

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Functions on ¥ 00000	Bipartite graphs ○○○○●○○	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Definitions					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Functions on ¥ 00000	Bipartite graphs 0000●00	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Definitions					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Functions on ¥ 00000	Bipartite graphs 0000●00	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Definitions					

▲□▶ ▲圖▶ ★国▶ ★国▶ - 国 - のへの

Functions on ¥ 00000	Bipartite graphs 0000●00	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Definitions					

Functions on ¥ 00000	Bipartite graphs 0000●00	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Definitions					

Functions on ¥ 00000	Bipartite graphs 0000●00	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Definitions					

Functions on ¥ 00000	Bipartite graphs 0000●00	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Definitions					

Functions on ¥ 00000	Bipartite graphs 0000€00	Differential calculus 000	Relations 0	Jack characters 000		
Derivatives of bipartite graphs						
Definitions	;					

Functions on ¥ 00000	Bipartite graphs 0000€00	Differential calculus 000	Relations 0	Jack characters 000		
Derivatives of bipartite graphs						
Definitions	;					

Functions on ¥ 00000	Bipartite graphs 0000€00	Differential calculus 000	Relations 0	Jack characters 000		
Derivatives of bipartite graphs						
Definitions	;					

Functions on ¥ 00000	Bipartite graphs 0000●00	Differential calculus 000	Relations 0	Jack characters 000		
Derivatives of bipartite graphs						
Definitions						

Functions on ¥ 00000	Bipartite graphs 0000●00	Differential calculus 000	Relations 0	Jack characters 000		
Derivatives of bipartite graphs						
Definitions						

Functions on ¥ 00000	Bipartite graphs 0000●00	Differential calculus 000	Relations 0	Jack characters 000		
Derivatives of bipartite graphs						
Definitions						

Functions on ¥ 00000	Bipartite graphs 00000€0	Differential calculus 000	Relations 0	Jack characters 000
Derivatives of bipart	ite graphs			
Main theo	rem			

Theorem (D., Sniady)

Let \mathcal{G} be a linear combination of bipartite graphs such that

 $\left(\partial_x+\partial_y\right)\partial_z\mathcal{G}=0.$

Then $\lambda \mapsto N_{\mathcal{G}}(\lambda)$ is a polynomial function on the set of Young diagrams.

Corollary

$$\sum_{\mathcal{M}} (-1)^{|V_{\circ}(\mathcal{M})|} N_{\mathcal{M}}, \qquad (1)$$

・ロト ・個ト ・モト ・モト

э

where the summation is over all labeled bipartite maps with the face type μ is a polynomial function on \mathbb{Y} .

Functions on ¥ 00000	Bipartite graphs ०००००●०	Differential calculus 000	Relations 0	Jack characters 000
Derivatives of bipartite	graphs			
Main theore	m			

Theorem (D., Śniady)

Let ${\mathcal G}$ be a linear combination of bipartite graphs such that

$$(\partial_x + \partial_y) \partial_z \mathcal{G} = 0.$$

Then $\lambda \mapsto N_{\mathcal{G}}(\lambda)$ is a polynomial function on the set of Young diagrams.

Corollary

$$\sum_{\mathcal{M}} (-1)^{|V_{\circ}(\mathcal{M})|} N_{\mathcal{M}}, \qquad (1)$$

ヘロト ヘロト ヘヨト ヘヨト

э

where the summation is over all labeled bipartite maps with the face type μ is a polynomial function on \mathbb{Y} .

Functions on ¥ 00000	Bipartite graphs ०००००●०	Differential calculus 000	Relations 0	Jack characters 000
Derivatives of bipartite	graphs			
Main theore	m			

Theorem (D., Śniady)

Let $\mathcal G$ be a linear combination of bipartite graphs such that

$$(\partial_x + \partial_y) \partial_z \mathcal{G} = 0.$$

Then $\lambda \mapsto N_{\mathcal{G}}(\lambda)$ is a polynomial function on the set of Young diagrams.

Corollary

$$\sum_{\mathcal{M}} (-1)^{|V_{\circ}(\mathcal{M})|} N_{\mathcal{M}}, \qquad (1)$$

where the summation is over all labeled bipartite oriented maps with the face type μ is a polynomial function on \mathbb{Y} .

Functions on ¥ 00000	Bipartite graphs ०००००●०	Differential calculus 000	Relations 0	Jack characters 000
Derivatives of bipartite	graphs			
Main theore	m			

Theorem (D., Śniady)

Let ${\mathcal G}$ be a linear combination of bipartite graphs such that

$$(\partial_x + \partial_y) \partial_z \mathcal{G} = 0.$$

Then $\lambda \mapsto N_{\mathcal{G}}(\lambda)$ is a polynomial function on the set of Young diagrams.

Corollary

$$\sum_{\mathcal{M}} (-1)^{|V_{\circ}(\mathcal{M})|} N_{\mathcal{M}}, \qquad (1)$$

where the summation is over all (not only oriented) labeled bipartite maps with the face type μ is a polynomial function on \mathbb{Y} .

Functions on ¥ 00000	Bipartite graphs 000000●	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Proof of the	corollary				

By the Main Theorem it suffices to show that $(\partial_x + \partial_y)\partial_z \left(\sum_{\mathcal{M}} (-1)^{|V_\circ(\mathcal{M})|} \mathcal{M}\right) = 0$. Let us look at ∂_x :

We can do the same with ∂_y by the symmetry. These two procedures are inverses of each other.

Functions on ¥ 00000	Bipartite graphs 000000●	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Proof of the	corollary				

By the Main Theorem it suffices to show that $(\partial_x + \partial_y)\partial_z \left(\sum_{\mathcal{M}} (-1)^{|V_\circ(\mathcal{M})|} \mathcal{M}\right) = 0$. Let us look at ∂_x :

We can do the same with ∂_y by the symmetry. These two procedures are inverses of each other.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Functions on ¥ 00000	Bipartite graphs 000000●	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Proof of the	corollary				

By the Main Theorem it suffices to show that $(\partial_x + \partial_y)\partial_z \left(\sum_{\mathcal{M}} (-1)^{|V_\circ(\mathcal{M})|} \mathcal{M}\right) = 0$. Let us look at ∂_x :

We can do the same with ∂_y by the symmetry. These two procedures are inverses of each other.

Functions on ¥ 00000	Bipartite graphs ○○○○○●	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Proof of th	ie corollary				

By the Main Theorem it suffices to show that $(\partial_x + \partial_y)\partial_z \left(\sum_{\mathcal{M}} (-1)^{|V_\circ(\mathcal{M})|} \mathcal{M}\right) = 0$. Let us look at ∂_x :

We can do the same with ∂_y by the symmetry. These two procedures are inverses of each other.

Functions on ¥ 00000	Bipartite graphs 000000●	Differential calculus 000	Relations 0	Jack characters 000	
Derivatives of bipartite graphs					
Proof of the	corollary				

By the Main Theorem it suffices to show that $(\partial_x + \partial_y)\partial_z \left(\sum_{\mathcal{M}} (-1)^{|V_\circ(\mathcal{M})|} \mathcal{M}\right) = 0$. Let us look at ∂_x :

We can do the same with ∂_y by the symmetry. These two procedures are inverses of each other.

Conventions of drawing Young diagrams:

(日) (四) (日) (日)

Conventions of drawing Young diagrams:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Conventions of drawing Young diagrams:

• Russian convention:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus ⊙●⊙	Relations 0	Jack characters 000
Generalized Young d	iagrams			
Young dia	grams as func	tions		

We want to make a differential calculus on \mathbb{Y} .

Problem Young diagrams are very discrete.

Solution

We can define generalized Young diagrams as continous objects!

Definitior

A generalized Young diagram is a function $\omega : \mathbb{R}_+ \to \mathbb{R}$ such that:

•
$$|\omega(z_1)-\omega(z_2)|\leq |z_1-z_2|$$
 (Lipschitz with constant 1),

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus ⊙●○	Relations 0	Jack characters 000			
Generalized Young diagrams							
Young diag	grams as func [.]	tions					

Problem Young diagrams are very discrete.

Solution

We can define generalized Young diagrams as continous objects!

Definitior

A generalized Young diagram is a function $\omega: \mathbb{R}_+ \to \mathbb{R}$ such that:

•
$$|\omega(z_1)-\omega(z_2)|\leq |z_1-z_2|$$
 (Lipschitz with constant 1),

Functions on ∑ 00000	Bipartite graphs 0000000	Differential calculus ⊙●○	Relations 0	Jack characters 000
Generalized Young d	iagrams			
Young diag	grams as func [.]	tions		

Solution

We can define generalized Young diagrams as continous objects!

Definitior

A generalized Young diagram is a function $\omega : \mathbb{R}_+ \to \mathbb{R}$ such that:

•
$$|\omega(z_1)-\omega(z_2)|\leq |z_1-z_2|$$
 (Lipschitz with constant 1),

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus ○●○	Relations 0	Jack characters 000
Generalized Young d	iagrams			
Young diag	grams as func	tions		

Solution

We can define generalized Young diagrams as continous objects!

Definition

A generalized Young diagram is a function $\omega : \mathbb{R}_+ \to \mathbb{R}$ such that:

•
$$|\omega(z_1)-\omega(z_2)|\leq |z_1-z_2|$$
 (Lipschitz with constant 1),

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus ○●○	Relations 0	Jack characters 000
Generalized Young d	lagrams			
Young diag	grams as func	tions		

Solution

We can define generalized Young diagrams as continous objects!

Definition

A generalized Young diagram is a function $\omega : \mathbb{R}_+ \to \mathbb{R}$ such that:

•
$$|\omega(z_1)-\omega(z_2)|\leq |z_1-z_2|$$
 (Lipschitz with constant 1),

•
$$\omega(z) = |z|$$
 if $|z|$ is large enough.

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus ○○●	Relations 0	Jack characters 000
Content-derivative				
Content-deri	vative			

Problem

How quickly the value of $F(\lambda)$ would change if we change the shape of λ by adding infinitesimal boxes with content equal to $z = z_0$?

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus ○○●	Relations 0	Jack characters 000
Content-derivative				
Content-deri	vative			

Problem

How quickly the value of $F(\lambda)$ would change if we change the shape of λ by adding infinitesimal boxes with content equal to $z = z_0$?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus ○○●	Relations 0	Jack characters 000
Content-derivative				
Content-deri	vative			

Problem

How quickly the value of $F(\lambda)$ would change if we change the shape of λ by adding infinitesimal boxes with content equal to $z = z_0$?

ヘロト 人間と 人造と 人造と

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus ००●	Relations 0	Jack characters 000
Content-derivative				
Content-de	rivative			

Problem

How quickly the value of $F(\lambda)$ would change if we change the shape of λ by adding infinitesimal boxes with content equal to $z = z_0$?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus ००●	Relations 0	Jack characters 000
Content-derivative				
Content-de	erivative			

Problem

How quickly the value of $F(\lambda)$ would change if we change the shape of λ by adding infinitesimal boxes with content equal to $z = z_0$?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus ००●	Relations 0	Jack characters 000
Content-derivative				
Content-de	rivative			

Problem

How quickly the value of $F(\lambda)$ would change if we change the shape of λ by adding infinitesimal boxes with content equal to $z = z_0$?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus ००●	Relations 0	Jack characters 000
Content-derivative				
Content-de	erivative			

Problem

How quickly the value of $F(\lambda)$ would change if we change the shape of λ by adding infinitesimal boxes with content equal to $z = z_0$?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus ००●	Relations 0	Jack characters 000
Content-derivative				
Content-der	ivative			

Problem

How quickly the value of $F(\lambda)$ would change if we change the shape of λ by adding infinitesimal boxes with content equal to $z = z_0$?

(ロ)、(部)、(E)、(E)、 E

Solution

Content-derivative $\partial_{C_z} F(\lambda)$ will measure it!

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations ●	Jack characters 000	
Differential calculus on $\mathbb Y$ and bipartite graphs					
Details of th	e proof				

Let G be a bipartite graph and ${\cal G}$ be a linear combination of bipartite graphs. Then:

•
$$\partial_{C_z} N_G(\lambda) = N_{\partial_z G}(\lambda)$$

•
$$\frac{d}{dz}\partial_{C_z}N_G(\lambda) = \frac{\omega'(z)+1}{2}N_{\partial_x\partial_z G}(\lambda) + \frac{\omega'(z)-1}{2}N_{\partial_y\partial_z G}(\lambda)$$

•
$$\frac{d}{dz}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2}N_{(\partial_x - \partial_y)\partial_z G}$$

•
$$\frac{d'}{dz^i}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2^i}N_{(\partial_x-\partial_y)^i\partial_z G^i}$$

•
$$z \mapsto \partial_{C_z} N_{\mathcal{G}}(\lambda)$$
 is polynomial,

- $[z^k]\partial_{C_z}N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} ,
- $N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} .

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations ●	Jack characters 000	
Differential calculus on $\mathbb Y$ and bipartite graphs					
Details of th	e proof				

Let G be a bipartite graph and \mathcal{G} be a linear combination of bipartite graphs. Then:

•
$$\partial_{C_z} N_G(\lambda) = N_{\partial_z G}(\lambda),$$

•
$$\frac{d}{dz}\partial_{C_z}N_G(\lambda) = \frac{\omega'(z)+1}{2}N_{\partial_x\partial_z G}(\lambda) + \frac{\omega'(z)-1}{2}N_{\partial_y\partial_z G}(\lambda)$$

•
$$\frac{d}{dz}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2}N_{(\partial_x - \partial_y)\partial_z G}$$

•
$$\frac{d'}{dz^i}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2^i}N_{(\partial_x-\partial_y)^i\partial_zG^i}$$

•
$$z \mapsto \partial_{C_z} N_{\mathcal{G}}(\lambda)$$
 is polynomial,

- $[z^k]\partial_{C_z}N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} ,
- $N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} .

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations ●	Jack characters 000	
Differential calculus on $\mathbb {Y}$ and bipartite graphs					
Details of th	e proof				

Let G be a bipartite graph and \mathcal{G} be a linear combination of bipartite graphs. Then:

•
$$\partial_{C_z} N_G(\lambda) = N_{\partial_z G}(\lambda),$$

•
$$\frac{d}{dz}\partial_{C_z}N_G(\lambda) = \frac{\omega'(z)+1}{2}N_{\partial_x\partial_z G}(\lambda) + \frac{\omega'(z)-1}{2}N_{\partial_y\partial_z G}(\lambda)$$

•
$$\frac{d}{dz}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2}N_{(\partial_x - \partial_y)\partial_z G}$$

•
$$\frac{d'}{dz^i}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2^i}N_{(\partial_x-\partial_y)^i\partial_z G}$$

•
$$z \mapsto \partial_{C_z} N_{\mathcal{G}}(\lambda)$$
 is polynomial,

- $[z^k]\partial_{C_z}N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} ,
- $N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} .

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations ●	Jack characters 000	
Differential calculus on ${\mathbb Y}$ and bipartite graphs					
Details of th	e proof				

Let G be a bipartite graph and \mathcal{G} be a linear combination of bipartite graphs. Then:

•
$$\partial_{C_z} N_G(\lambda) = N_{\partial_z G}(\lambda),$$

•
$$\frac{d}{dz}\partial_{C_z}N_G(\lambda) = \frac{\omega'(z)+1}{2}N_{\partial_x\partial_z G}(\lambda) + \frac{\omega'(z)-1}{2}N_{\partial_y\partial_z G}(\lambda)$$

•
$$\frac{d}{dz}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2}N_{(\partial_x - \partial_y)\partial_z G}$$

•
$$\frac{d'}{dz^i}\partial_{C_z}N_{\mathcal{G}}(\lambda)=\frac{1}{2^i}N_{(\partial_x-\partial_y)^i\partial_z G}$$

•
$$z \mapsto \partial_{C_z} N_{\mathcal{G}}(\lambda)$$
 is polynomial,

- $[z^k]\partial_{C_z}N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} ,
- $N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} .

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations ●	Jack characters 000
Differential calculus on ${\mathbb Y}$ and bipartite graphs				
Details of th	e proof			

Let G be a bipartite graph and \mathcal{G} be a linear combination of bipartite graphs. Then:

•
$$\partial_{C_z} N_G(\lambda) = N_{\partial_z G}(\lambda),$$

•
$$\frac{d}{dz}\partial_{C_z}N_G(\lambda) = \frac{\omega'(z)+1}{2}N_{\partial_x\partial_z}G(\lambda) + \frac{\omega'(z)-1}{2}N_{\partial_y\partial_z}G(\lambda)$$

•
$$\frac{d}{dz}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2}N_{(\partial_x - \partial_y)\partial_z G}$$

•
$$\frac{d^i}{dz^i}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2^i}N_{(\partial_x-\partial_y)^i\partial_z G}$$

• $z \mapsto \partial_{C_z} N_{\mathcal{G}}(\lambda)$ is polynomial,

• $[z^k]\partial_{C_z}N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} ,

• $N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} .

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations ●	Jack characters 000
Differential calculus on ${\mathbb Y}$ and bipartite graphs				
Details of th	e proof			

Let G be a bipartite graph and \mathcal{G} be a linear combination of bipartite graphs. Then:

•
$$\partial_{C_z} N_G(\lambda) = N_{\partial_z G}(\lambda),$$

•
$$\frac{d}{dz}\partial_{C_z}N_G(\lambda) = \frac{\omega'(z)+1}{2}N_{\partial_x\partial_z G}(\lambda) + \frac{\omega'(z)-1}{2}N_{\partial_y\partial_z G}(\lambda)$$

•
$$\frac{d}{dz}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2}N_{(\partial_x - \partial_y)\partial_z G}$$

•
$$\frac{d^i}{dz^i}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2^i}N_{(\partial_x-\partial_y)^i\partial_z G^i}$$

•
$$z\mapsto \partial_{\mathcal{C}_z}\mathcal{N}_{\mathcal{G}}(\lambda)$$
 is polynomial,

•
$$[z^k]\partial_{\mathcal{C}_z}N_{\mathcal{G}}(\lambda)$$
 is a polynomial function on \mathbb{Y} ,

• $N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} .

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations ●	Jack characters 000
Differential calculus on	∑ and bipartite graphs			
Details of th	e proof			

Let G be a bipartite graph and \mathcal{G} be a linear combination of bipartite graphs. Then:

•
$$\partial_{C_z} N_G(\lambda) = N_{\partial_z G}(\lambda),$$

•
$$\frac{d}{dz}\partial_{C_z}N_G(\lambda) = \frac{\omega'(z)+1}{2}N_{\partial_x\partial_z}G(\lambda) + \frac{\omega'(z)-1}{2}N_{\partial_y\partial_z}G(\lambda)$$

•
$$\frac{d}{dz}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2}N_{(\partial_x - \partial_y)\partial_z G}$$

•
$$\frac{d^i}{dz^i}\partial_{C_z}N_{\mathcal{G}}(\lambda) = \frac{1}{2^i}N_{(\partial_x-\partial_y)^i\partial_z G}$$

•
$$z \mapsto \partial_{C_z} N_{\mathcal{G}}(\lambda)$$
 is polynomial,

• $[z^k]\partial_{C_z}N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} ,

• $N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} .

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations ●	Jack characters 000
Differential calculus on ${\mathbb Y}$ and bipartite graphs				
Details of th	e proof			

Let G be a bipartite graph and G be a linear combination of bipartite graphs. Then:

•
$$\partial_{C_z} N_G(\lambda) = N_{\partial_z G}(\lambda),$$

• $\frac{d}{dz} \partial_{C_z} N_G(\lambda) = \frac{\omega'(z)+1}{2} N_{\partial_x \partial_z G}(\lambda) + \frac{\omega'(z)-1}{2} N_{\partial_y \partial_z G}(\lambda)$
• $\frac{d}{dz} \partial_{C_z} N_G(\lambda) = \frac{1}{2} N_{(\partial_x - \partial_y)\partial_z G},$
• $\frac{d^i}{dz^i} \partial_{C_z} N_G(\lambda) = \frac{1}{2^i} N_{(\partial_x - \partial_y)^i \partial_z G},$
• $z \mapsto \partial_{C_z} N_G(\lambda)$ is polynomial,

(日) (四) (日) (日)

- $[z^k]\partial_{C_z}N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} ,
- $N_{\mathcal{G}}(\lambda)$ is a polynomial function on \mathbb{Y} .

Functions on ¥	Bipartite graphs	Differential calculus	Relations	Jack characters
00000	0000000	000	0	●00
What do we know and w	hat we don't			

Characterization of Jack shifted symmetric functions

Jack shifted symmetric functions $J^{(\alpha)}_{\mu}$ with parameter α came from symmetric functions theory. They are characterized by three conditions:

- $J^{(\alpha)}_{\mu}(\mu) \neq 0$ and for each Young diagram $\lambda \neq \mu$ such that $|\lambda| \leq |\mu|$ we have $J^{(\alpha)}_{\mu}(\lambda) = 0$;
- $J^{(\alpha)}_{\mu}$ has degree equal to $|\mu|$ (regarded as a shifted symmetric function);
- The function $\lambda \mapsto J^{(\alpha)}_{\mu}\left(\frac{1}{\alpha}\lambda\right)$ is a polynomial function.

Jack characters $\Sigma^{(lpha)}_{\pi}$ are given by:

$$J^{(\alpha)}_{\mu}(\lambda) = \sum_{\pi \vdash |\mu|} n^{(\alpha)}_{\pi} \ \Sigma^{(\alpha)}_{\pi}(\mu) \ \Sigma^{(\alpha)}_{\pi}(\lambda).$$

Functions on ¥	Bipartite graphs	Differential calculus	Relations	Jack characters
00000	0000000	000	0	●○○
What do we know and w	hat we don't			

Characterization of Jack shifted symmetric functions

Jack shifted symmetric functions $J^{(\alpha)}_{\mu}$ with parameter α came from symmetric functions theory. They are characterized by three conditions:

- $J^{(\alpha)}_{\mu}(\mu) \neq 0$ and for each Young diagram $\lambda \neq \mu$ such that $|\lambda| \leq |\mu|$ we have $J^{(\alpha)}_{\mu}(\lambda) = 0$;
- $J^{(\alpha)}_{\mu}$ has degree equal to $|\mu|$ (regarded as a shifted symmetric function);
- The function $\lambda \mapsto J^{(\alpha)}_{\mu}\left(\frac{1}{\alpha}\lambda\right)$ is a polynomial function.

Jack characters $\Sigma^{(lpha)}_{\pi}$ are given by:

$$J^{(\alpha)}_{\mu}(\lambda) = \sum_{\pi \vdash |\mu|} n^{(\alpha)}_{\pi} \ \Sigma^{(\alpha)}_{\pi}(\mu) \ \Sigma^{(\alpha)}_{\pi}(\lambda).$$

 Functions on Y
 Bipartite graphs
 Differential calculus
 Relations
 Jack characters

 00000
 000000
 000
 000
 000

 What do we know and what we don't

Characterization of Jack shifted symmetric functions

Jack shifted symmetric functions $J^{(\alpha)}_{\mu}$ with parameter α came from symmetric functions theory. They are characterized by three conditions:

- $J^{(\alpha)}_{\mu}(\mu) \neq 0$ and for each Young diagram $\lambda \neq \mu$ such that $|\lambda| \leq |\mu|$ we have $J^{(\alpha)}_{\mu}(\lambda) = 0$;
- $J^{(\alpha)}_{\mu}$ has degree equal to $|\mu|$ (regarded as a shifted symmetric function);
- The function $\lambda \mapsto J^{(\alpha)}_{\mu}\left(\frac{1}{\alpha}\lambda\right)$ is a polynomial function.

Jack characters $\Sigma^{(lpha)}_{\pi}$ are given by:

$$J^{(\alpha)}_{\mu}(\lambda) = \sum_{\pi \vdash |\mu|} n^{(\alpha)}_{\pi} \ \Sigma^{(\alpha)}_{\pi}(\mu) \ \Sigma^{(\alpha)}_{\pi}(\lambda).$$
Functions on Y
 Bipartite graphs
 Differential calculus
 Relations
 Jack characters

 00000
 000
 000
 0
 000

Characterization of Jack shifted symmetric functions

Jack shifted symmetric functions $J^{(\alpha)}_{\mu}$ with parameter α came from symmetric functions theory. They are characterized by three conditions:

- $J^{(\alpha)}_{\mu}(\mu) \neq 0$ and for each Young diagram $\lambda \neq \mu$ such that $|\lambda| \leq |\mu|$ we have $J^{(\alpha)}_{\mu}(\lambda) = 0$;
- $J^{(\alpha)}_{\mu}$ has degree equal to $|\mu|$ (regarded as a shifted symmetric function);
- The function $\lambda \mapsto J^{(\alpha)}_{\mu}\left(\frac{1}{\alpha}\lambda\right)$ is a polynomial function.

Jack characters $\Sigma^{(lpha)}_{\pi}$ are given by:

$$J^{(\alpha)}_{\mu}(\lambda) = \sum_{\pi \vdash |\mu|} n^{(\alpha)}_{\pi} \ \Sigma^{(\alpha)}_{\pi}(\mu) \ \Sigma^{(\alpha)}_{\pi}(\lambda).$$

 Functions on Y
 Bipartite graphs
 Differential calculus
 Relations
 Jack characters

 00000
 000000
 000
 000
 000

 What do we know and what we don't

Characterization of Jack shifted symmetric functions

Jack shifted symmetric functions $J^{(\alpha)}_{\mu}$ with parameter α came from symmetric functions theory. They are characterized by three conditions:

- $J^{(\alpha)}_{\mu}(\mu) \neq 0$ and for each Young diagram $\lambda \neq \mu$ such that $|\lambda| \leq |\mu|$ we have $J^{(\alpha)}_{\mu}(\lambda) = 0$;
- $J^{(\alpha)}_{\mu}$ has degree equal to $|\mu|$ (regarded as a shifted symmetric function);
- The function $\lambda\mapsto J^{(lpha)}_\mu\left(rac{1}{lpha}\lambda
 ight)$ is a polynomial function.

Jack characters $\Sigma^{(lpha)}_{\pi}$ are given by:

$$J^{(\alpha)}_{\mu}(\lambda) = \sum_{\pi \vdash |\mu|} n^{(\alpha)}_{\pi} \ \Sigma^{(\alpha)}_{\pi}(\mu) \ \Sigma^{(\alpha)}_{\pi}(\lambda).$$

 Functions on Y
 Bipartite graphs
 Differential calculus
 Relations
 Jack characters

 00000
 000
 000
 0
 000

Characterization of Jack shifted symmetric functions

Jack shifted symmetric functions $J^{(\alpha)}_{\mu}$ with parameter α came from symmetric functions theory. They are characterized by three conditions:

- $J^{(\alpha)}_{\mu}(\mu) \neq 0$ and for each Young diagram $\lambda \neq \mu$ such that $|\lambda| \leq |\mu|$ we have $J^{(\alpha)}_{\mu}(\lambda) = 0$;
- $J^{(\alpha)}_{\mu}$ has degree equal to $|\mu|$ (regarded as a shifted symmetric function);
- The function $\lambda\mapsto J^{(lpha)}_\mu\left(rac{1}{lpha}\lambda
 ight)$ is a polynomial function.

Jack characters $\Sigma_{\pi}^{(\alpha)}$ are given by:

$$J^{(\alpha)}_{\mu}(\lambda) = \sum_{\pi \vdash |\mu|} n^{(\alpha)}_{\pi} \ \Sigma^{(\alpha)}_{\pi}(\mu) \ \Sigma^{(\alpha)}_{\pi}(\lambda).$$

Jack characters generalize normalized characters:

$\Sigma_{\pi}(\lambda) = \Sigma_{\pi}^{(1)}(\lambda)$

ション ふゆ アメリア メリア しょうくの

How to express Jack characters in terms of N_G?
For some α first two conditions are easy to verify.

Theorem (Féray, Śniady)

• Jack characters generalize normalized characters:

$$\Sigma_{\pi}(\lambda) = \Sigma_{\pi}^{(1)}(\lambda)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- How to express Jack characters in terms of N_G ?
- For some lpha first two conditions are easy to verify.

Theorem (Féray, Śniady)

• Jack characters generalize normalized characters:

$$\Sigma_{\pi}(\lambda) = \Sigma_{\pi}^{(1)}(\lambda)$$

- How to express Jack characters in terms of N_G ?
- For some α first two conditions are easy to verify.

Theorem (Féray, Śniady)

$$\Sigma^{(1)}_{\mu} = \sum_{\mathcal{M}} (-1)^{|\mu| - |V_{\circ}(\mathcal{M})|} N_{\mathcal{M}},$$

where the summation is over all labeled bipartite oriented maps with the face type μ ,

• Jack characters generalize normalized characters:

$$\Sigma_{\pi}(\lambda) = \Sigma_{\pi}^{(1)}(\lambda)$$

- How to express Jack characters in terms of N_G ?
- For some lpha first two conditions are easy to verify.

Theorem (Féray, Śniady)

$$\Sigma_{\mu}^{(2)} = (-1)^{|\mu|} \sum_{\mathcal{M}} (-2)^{|V_{\circ}(\mathcal{M})|} N_{\mathcal{M}},$$

where the summation is over all labeled bipartite (not only oriented) maps with the face type μ .

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 00●		
What do we know and what we don't						
Open quest	ion					

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 00●	
What do we know and what we don't					
Open questi	on				

N_G(λ) is a number of colorings of vertices of G (by natural numbers) which are compatible with λ.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 00●	
What do we know and what we don't					
Open questi	on				

• $N_G(\lambda)$ is a number of colorings of edges of G (by boxes of λ) such that whenever $e_1 \cap e_2 \in V_{\circ}$ (V_{\bullet} resp.), then $h(e_1)$ and $h(e_2)$ are in the same column (row resp.) of λ .

ション ふゆ アメリア メリア しょうくの

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 00●		
What do we know and what we don't						
Open questi	on					

- $N_G(\lambda)$ is a number of colorings of edges of G (by boxes of λ) such that whenever $e_1 \cap e_2 \in V_{\circ}$ (V_{\bullet} resp.), then $h(e_1)$ and $h(e_2)$ are in the same column (row resp.) of λ .
- Let $\tilde{N}_G(\lambda)$ is a number of injective colorings of edges of G as above.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 00●		
What do we know and what we don't						
Open questi	on					

- $N_G(\lambda)$ is a number of colorings of edges of G (by boxes of λ) such that whenever $e_1 \cap e_2 \in V_\circ$ (V_\bullet resp.), then $h(e_1)$ and $h(e_2)$ are in the same column (row resp.) of λ .
- Let $\tilde{N}_G(\lambda)$ is a number of injective colorings of edges of G as above.
- We have that:

$$\sum_{\mathcal{M}} (-1)^{|V_{\circ}(\mathcal{M})|} N_{\mathcal{M}} = \sum_{\mathcal{M}} (-1)^{|V_{\circ}(\mathcal{M})|} \tilde{N}_{\mathcal{M}}$$

ション ふゆ アメリア メリア しょうくの

where the summation is over all labeled bipartite oriented maps with the face type μ ,

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 00●		
What do we know and what we don't						
Open questi	on					

- $N_G(\lambda)$ is a number of colorings of edges of G (by boxes of λ) such that whenever $e_1 \cap e_2 \in V_\circ$ (V_\bullet resp.), then $h(e_1)$ and $h(e_2)$ are in the same column (row resp.) of λ .
- Let $\tilde{N}_G(\lambda)$ is a number of injective colorings of edges of G as above.
- We have that:

$$\sum_{\mathcal{M}} (-2)^{|V_{\circ}(\mathcal{M})|} N_{\mathcal{M}} = \sum_{\mathcal{M}} (-2)^{|V_{\circ}(\mathcal{M})|} \tilde{N}_{\mathcal{M}}$$

ション ふゆ アメリア メリア しょうくの

where the summation is over all labeled bipartite (not only oriented) maps with the face type μ .

Functions on ¥ 00000	Bipartite graphs 0000000	Differential calculus 000	Relations 0	Jack characters 00●	
What do we know and what we don't					
Open questi	on				

- $N_G(\lambda)$ is a number of colorings of edges of G (by boxes of λ) such that whenever $e_1 \cap e_2 \in V_\circ$ (V_\bullet resp.), then $h(e_1)$ and $h(e_2)$ are in the same column (row resp.) of λ .
- Let $\tilde{N}_G(\lambda)$ is a number of injective colorings of edges of G as above.

Problem

For which polynomials $f_{\mathcal{M}} \in \mathbb{Q}[x]$ we have

$$\sum_{\mathcal{M}} (-\alpha)^{|V_{\circ}(\mathcal{M})|} f_{\mathcal{M}}(\alpha) N_{\mathcal{M}} = \sum_{\mathcal{M}} (-\alpha)^{|V_{\circ}(\mathcal{M})|} f_{\mathcal{M}}(\alpha) \tilde{N}_{\mathcal{M}}$$

for all $\alpha \in \mathbb{R}_+$?