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Introduction
Limit Theorems of Probability Theory (a reminder)

Let fξ lgnl=1 be i.i.d. r.v�s with the probability law F and ϕ : R ! R and

Nn [ϕ] =
n

∑
l=1

ϕ(ξ l )

be the linear statistic of fξ lgnl=1, corresponding to the test function ϕ.

Law of Large Numbers (LLN): if Efjϕ(ξ1)jg < ∞, then with
probability 1

lim
n!∞

n�1Nn [ϕ] =
Z

ϕ(λ)F (dλ).

Central Limit Theorem (CLT): if Efϕ2(ξ1)g < ∞ then
n�1/2(Nn [ϕ]� EfNn [ϕ]g) converges in distribution to the Gaussian
r.v. with mean zero and variance

v2 = lim
n!∞

n�1VarfNn [ϕ]g = Varfϕ(ξ1)g, Varfηg := Efη2g�E2fηg.

Note that for i.i.d. r.v.�s VarfNn [ϕ]g = O(n), n! ∞
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Introduction
Random Matrices

We have:

A sequence fMngn of n� n real symmetric or hermitian random
matrices (random matrix), i.e., the matrix triangular array scheme;

eigenvalues fλ
(n)
l gnl=1 and eigenvectors fψ

(n)
l gnl=1 of Mn

spectral statistics Sn :
n
fλ
(n)
l gnl=1, fψ

(n)
l gnl=1g

o
! R, in particular

linear eigenvalue statistics for a given test function ϕ : R ! R

Nn [ϕ] :=
n

∑
l=1

ϕ
�

λ
(n)
l

�
= Trϕ(Mn)

We are interested in the limiting laws of Sn and Nn as n! ∞.
(possibly after a certain additive and/or multiplicative normalization
(recall LLN and CLT for i.i.d. r.v.�s).
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Gaussian Matrices
Description

Set Mn = n�1/2Wn, Wn = fWjkgnj ,k=1

Pn(dW ) = Z�1n e�TrW 2/2w 2 ∏
1�j�n

dWjj ∏
1�j�k�n

d ReWjkd ImWjk .

Since
TrW 2

n = ∑
1�j�n

W 2
jj + 2 ∑

1�j�k�n
jWjk j2,

the above implies that fWjkg1�j�k�n are independent Gaussian random
variables such that

EfWjkg = EfW 2
jkg = 0, EfjWjk j2g = w2(1+ δjk )/2.

Gaussian Unitary Ensemble (GUE)
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Warning

Take the GOE for n = 2, i.e.,

Z�12 e�TrM 2/2w 2dM11dM22d ReM12d ImM12.

and �nd the joint distribution of (λ1,λ2):

Q�12 e�(λ
2
1+λ22)/2w 2 jλ1 � λ2j2dλ1dλ2,

since

λ1,2 =
(M11 +M22)�

p
(M11 �M22)2 + jM12j2
2

.

Eigenvalues are strongly dependent even if the matrix elements are not!
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Gaussian Matrices
Law of Large Numbers (LLN)

Theorem
Let Mn be the GUE matrix and Nn [ϕ] be a linear eigenvalue statistics of
its eigenvalues. Then we have for any bounded and continuous ϕ : R ! C
with probability 1:

lim
n!∞

1
n

n

∑
l=1

ϕ
�

λ
(n)
l

�
=
Z

ϕ(λ)Nscl (dλ),

where the measure

Nsc (dλ) = ρsc (λ)dλ, ρsc (λ) = (2πw2)�1
p
4w2 � λ21jλj�2w

is known as the Wigner or the semicircle law.

Wigner 52 and many others.
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Gaussian Matrices
"Deformed" Case

Take the Gaussian matrix with non-zero mean: Hn = H0,n +Mn, assume
that the Normalizing Counting Measure (NCM) N0,n of eigenvalues of H0,n
(which can be random but independent of Mn) converges weakly to N0.
Then the NCM Nn of Hn converges weakly with probability 1 to a
non-random limit N (hence any linear eigenvalue statistics with bounded
and continuous test function does) and if

f (z) =
Z N(dλ)

λ� z , =z 6= 0;

is its Stieltjes transform and f0 is that for N0, then f (z) = f0(z +w2f (z))
and the equation is uniquely solvable in the class of functions analytic in
C nR and such that Im f (z) Im z > 0, Im z 6= 0 (Nevanlinna class N )
and f (z) = �z�1 + o(z�1), z ! ∞.
This is known as the deformed semicircle law P. 72.
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Gaussian Matrices
Central Limit Theorem (CLT)

Theorem
Let Mn be the GUE matrix, ϕ : R ! R be a di¤erentiable function with a
polynomially bounded derivative. Then Nn [ϕ]� EfNn [ϕ]g !!! converges
in distribution to the Gaussian random variable with zero mean and the
variance

VGOE [ϕ] =
1
4π2

Z 2w

�2w

Z 2w

�2w

�
ϕ(λ1)� ϕ(λ2)

λ1 � λ2

�2
� 4w2 � λ1λ2q

4w2 � λ21

q
4w2 � λ22

dλ1dλ2.

Khorunzhy, Khoruzhenko, P. 96; Johansson 98; Guionnet et al 2000�s and
others

VarfNn [ϕ]g = O(1), n! ∞ A PUZZLE ?!
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Gaussian Matrices
Variance and the CLT: "Explanations"

LLN =) λ
(n)
l = O(1), n! ∞ , moreover, asymptotically are in

[�2w , 2w ] with p.1, i.e.,

Nn [ϕ]� EfNn [ϕ]g =
n

∑
l=1

O(1),

thus the CLT could result from the strong cancelations of terms.
Examples: recall that Mn = n�1/2Wn and consider:

(i) ϕ(λ) = λ, where ∑n
l=1 λ

(n)
l = TrM = n�1/2 ∑n

j=1Wjj

is Gaussian by de�nition;
(ii) ϕ(λ) = λ2, where ∑n

j ,k=1(λ
(n)
l )

2 = TrM2 = n�1 ∑n
j ,k=1 jWjk j2

is asymptotically Gaussian by standard CLT.
The "same" for su¢ ciently regular ϕ.
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Law of Addition of Random Matrices
Description

Take hermitian matrices An and Bn having limiting NCM�s NA and NB
and the Haar distributed unitary matrix Un and write

Hn = An + UnBnU�n (1)

Analogous real symmetric matrices with the orthogonal Haar distributed
matrix instead of the unitary.

The model is known since long time but became popular after Voiculescu
works of the 80s-90s and free probability.
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Let fβlgnl=1 and fblgnl=1 be the eigenvalues and eigenvectors of Bn. Then

Hn = An +
n

∑
l=1

βlPql ,

where fPql gnl=1 are the orthogonal projections on the random vectors
fqlgnl=1 uniformly distributed over the the unit sphere in Cn, modulo their
pairwise orthogonality. Removing this restriction, we obtain the i.i.d.
random vectors uniformly distributed over the the unit sphere in Cn. This
case was considered by Marchenko, P. 67.
The cases of the deformed GUE and the deformed Laguerre Ensemble
Mn = X � X , X = fXjkgnj ,k=1 are also the particular cases of (1) with
certain random Bn.
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Law of Addition
LLN

It can be proved then that the NCM of Hnconverges weakly with
probability 1 to a non-random limit Nwhose Stiletjes transform solves the
system 8<:

fA1+A2(z) = fA1(hA1(z)),
fA1+A2(z) = fA2(hA2(z)),
f �1A1+A2

(z) = z � hA1(z)� hA2(z),

where fA and fB the Stieltjes transforms of NA and NB and hA1,2(z)
analytic in CnR, hA1,2(z) = z + o(z), z ! ∞.
Voiculescu 80s; Speicher 90s; P., Vasilchuk 00, 07 with a long and then a
short and transparent one, based on a version of the Poincaré inequality
for classical groups.
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Law of Addition
CLT for linear eigenvalue statistics

Consider Hn = An + UnBnU�n and assume

sup
n
max

�Z
jλj4Nn,A(dλ),

Z
jλj4Nn,B (dλ)

�
< ∞.

Then
�
γn(z) = γn(z)� E fγn(z)g, where γn(z) = Tr (H � z)�1and

z 2 CnR, converges in distribution to the complex Gaussian random
variable γ(z) with zero means and the covariances

Varf<γ(z)g = 2�1<(S(z , z) + S(z , z)),
Varf=γ(z)g = �2�1<(S(z , z)� S(z , z)),

Covf<γ(z),=γ(z)g = 2�1=(S(z , z)� S(z , z)),

in which
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S(z1, z2) =
∂2

∂z1∂z2
log
(hA(z1)� hA(z2))(hB (z1)� hB (z2))
(z1 � z2)(f �1(z1)� f �1(z2))

is limit the of Covfγn(z1),γn(z2)g as n! ∞, and hA,B and f are as
above.
Since

γn(z) =
n

∑
l=1

�
λ
(n)
l � z

��1
and its variance is O(1) but not O(n), we have the same phenomenon of
strong cancellation as for the Gaussian Ensembles.
Related results by Speicher et al.
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Wigner Ensembles
Description

Mn = n�1/2Wn, Wn = fWjkgnj ,k=1
with Wjk = Wkj 2 R, 1 � j � k � n independent and

EfWjkg = 0, EfW 2
jkg = (1+ δjk )w

2,

i.e. the two �rst moments of the entries coincide with those of the GOE or

P(dWn) = ∏
1�j�k�n

Fjk (dWjk ),

where Fjk has above moments. The GOE corresponds to

Fjk (dW ) =
1

(2πσ2jk )
1/2 e

�W 2/2σ2jkdW , σ2jk = (1+ δjk )w
2.
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Wigner Ensembles
LLN and CLT

(i) Law of Large Numbers

Theorem

Let Mn = n�1/2Wn be the Wigner matrix and Nn be the Normalized
Counting Measure of its eigenvalues. We have
(i) if supj ,k EfjWjk j2+δg < ∞ for some δ > 0, then the semicrcle law is
valid with probability 1:

P 72, Girko 75
The LLN is the same as for Gaussian matrices (macroscopic universality) P
72, Girko 75 ;
(ii) if

w6 := sup
j ,k
Ef(W 6

jkg < ∞,

and (1+ jtj5)jbϕ(t)j 2 L1(R, then Nn [ϕ]� EfNn [ϕ]g obeys (!?) the
CLT with the variance

VWig [ϕ] = VGOE [ϕ] +
κ4

2π2w8

� Z 2w

�2w
ϕ(µ)

2w2 � µ2p
4w2 � µ2

dµ
�2
.

Khorunzhy, Khoruzhenko, P. 96; Anderson, Zeitouni 05; Lytova, P. 09
The "explanation" as for the GUE (if fWjkg are "not too dependent").
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Borel Type Theorems
"Genuine" Borel Theorem

Theorem
Let Un be a n� n unitary random matrix, whose probability law is the
normalized Haar measure on U(n), and An be a n� n matrix such that

lim
n!∞

n�1TrA�nAn = 1.

Then TrUnAn converges in distribution to the standard complex Gaussian
variable: γ = γ1 + iγ2, Efγ1g = Efγ1g = 0, Efγ21g = Efγ22g = 1/2.

E. Borel 1905 (An = fδj1δk1gnj ,k=1, TrUnAn = O11), Diaconis et al 2003;
Collins, Stolz 2006; P. 2007.
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Borel Type Theorems
Heuristics

Not linear eigenvalue statistics

Trϕ(Mn) =
n

∑
j=1

ϕjj (Mn) =
n

∑
l=1

ϕ(λ
(n)
l )

but a (simple) spectral statistic

ϕjj (Mn) =
n

∑
l=1

ϕ(λ
(n)
l )jψ

(n)
l j

2.

Since
n

∑
l=1

jψ(n)l j
2 = 1

jψ(n)l j2 ' 1/n, it is reasonable to believe that ϕjj (Mn) is to be
asymptotically "analogous" to 1/n� linear eigenvalue statistics.
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Borel Type Theorems
Gaussian Matrices

Theorem
Let Mn be the GOE matrix and ϕ : R ! R is continuous. We have for
any jn ! ∞ as n! ∞

Efϕjn jn (Mn)g) = Efn�1Trϕ(Mn)g and with p. 1

lim
n!∞

ϕjj (M) =
Z

ϕ(λ)Nscl (dλ);

limn!∞ nVarfϕjn jn (Mn)g = V (d )GOE [ϕ], where

V (d )GOE [ϕ] =
1
2

Z Z
jϕ(λ1)� ϕ(λ2)j2Nscl (dλ1)Nscl (dλ2);

n1/2(ϕjn jn (Mn)� Efϕjj (Mn)g) obey the CLT with variance V (d )GOE [ϕ]

Lytova, P. 09 LLN as for the traces, the variance is O(n�1) and the CLT,
as for i.i.d.�s.

no puzzles this time!.
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Borel Type Theorems
Law of Addition

One distinguish now the cases

Hn = An + U�nBUn, (2)

and
H̃ = V �n AnVn + U

�
nBnUn. (3)

which have the same results for the eigenvalue statistics (by the shift
invariance of the Haar measure and unitary invariance of eigenvalues).
Assume that supn jjAn jj, jjBn jj < ∞ and denote Gn(z) the resolvent one
of above random matrices.
Then we have in both cases the same LLN, i.e., the convergence with
probability 1 of (Gn(z))kk to the same limit as n�1TrGn(z), i.e., for the
solution of the above system.
However, this is not the case for the �uctuations. Here we have

Covf(Gn(z1))kk , (Gn(z2))kkg =
1
n
Tn(z1, z2) + rn(z1, z2), z1,2 2 CnR

where in the case of (2)

Tn(z1, z2) =
((GA(hB (z1))� GA(hB (z2)))kk )

2

δf

�
1
δz
� 1

δhB

�Pastur (MD ILT) Limit Theorems Vienna, ?? February 2011 21 / 38



and in the case of (3)

Tn(z1, z2) =
δf
δz
� f (z1)f (z2) (4)

in which

δz = z1 � z2, δf = f (z1)� f (z2),
δhB = hB (z1)� hB (z2), GA(z) = (A� zI )�1

and the remainder rn(z1, z2) admits the bound

jrn(z1, z2)j � C/n3/2,

where C is independent of n and is �nite if minfj=z1j, j=z2jg > 0.
Moreover, the CLT with this variance is valid for su¢ ciently wide class of
test functions.
Thus the situation is similar to that in the probability theory.
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Matrix Elements of Functions of Wigner Matrices
LLN and Variance

Theorem

Let Mn = n�1/2Wn, Wn = fWjkgnj ,k=1 be real symmetric Wigner matrix
such that the 3rd and 4th moments of Wjk do not depend on j , k.
Consider ϕjj (Mn). where (1+ jtj)3bϕ(t) 2 L1(R). Then we have for any
jn ! ∞ as n! ∞ :

with probability 1

VWd [ϕ] : = lim
n!∞

nVarfϕjn jn (M)g

= V GOEd [ϕ] +
κ4
w8

� Z 2w

�2w
ϕ(µ)(w2 � µ2)ρsc (µ)dµ

�2
,

where ρsc is the density of the semicircle law.

Thus, the variance of ϕjn jn (M) is O(1/n) as for the GOE (although has
an additional term). Is the CLT the case?
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Matrix Elements of Functions of Wigner Matrices
Limiting Law

Theorem

Consider Mn = n�1/2Wn, Wn = fWjkgnj ,k=1, Wjk = (1+ δjk )
1/2Vjk ,

where Vjk , 1 � j � k � n are i.i.d. Assume that the logarithm of the
characteristic function Efe ixV11g is entire. Then

p
nϕ�jn jn (M) converges in

distribution as n! ∞ to the random variable ξ, such that

Efe ixξg = exp
n
�(VWd x2 + w2(x�)2)/2

o
Efe ix �V11g

where

x� =
x
w2

Z 2w

�2w
ϕ(µ)µρsc (µ)dµ.

Lytova, P. 10. "Almost" individual
Analogous result for in�nitely divisible fVjkg�s and ϕ 2 C 2 Lytova 10.

Eigenvectors are not too similar to those of GOE
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Matrix Elements of Functions of Wigner Matrices
Examples

(i) ϕ(λ) = λ :

n1/2ϕjj (Mn) = Wjj =

�
Gaussian, GOE ,

any, Wigner 6= GOE .

(ii) ϕ(λ) = λ2 :

n1/2ϕjj (Mn) = n�1/2
n

∑
k=1

W 2
jk

is asymptotically Gaussian by standard CLT.
The "same" for su¢ ciently regular ϕ�s, since the "renormalized" argument
x� of Efe ixV11g is

x� =
�

proportional x ϕ is odd ,
0, ϕ is even.
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Hermitian Matrix Models
Description

Z�1n expf�TrV (Mn)gdMn

dMn =
n

∏
j=1
dMjj ∏

1�j<k�n
d<Mjkd=Mjk ,

V : R ! R+ is a continuous function (potential), and

9 ε > 0, L < ∞ V (λ) � (2+ ε) log(1+ jλj) > 0, jλj � L

V = λ2/2 corresponds to the Gaussian Unitary Ensemble (GUE). In fact,

(Wigner Matrices)
\
(Matrix Models) = (Gaussian Matrices)

Strongly dependent entries, e.g. for V = λ4
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Hermitian Matrix Models
Law of Large Numbers

For any non-negative measure m of unit mass on R de�ne (Gauss)

E [m] =
Z
V (λ)m(dλ)�

Z Z
log jλ� µjm(dλ)m(dµ),

and let N be a unique minimizer of E : infm E [m] = E(N). Then for
V 0 2 Liploc1 with probability 1 in weak sense

lim
n!∞

n�1Nn = N, N(dλ) = ρ(λ)dλ,

Wigner 52; Brezin et al 79; A. Boutet de Monvel, P., Shcherbina 95; Deift
et al 98; Johansson, 98
If V is convex, then suppN = [a, b] and if V is real analytic, then

suppN =
[q

l=1
[al , bl ], 1 � q < ∞.
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Hermitian Matrix Models
Variance of Linear Eigenvalue Statistics

O(1) bound for Lip1 test functions P., Shcherbina 97

Asymptotic form
Var

�
Nn [ϕ]

	
' V(nβ),

V : Tq�1 ! R+, βl = N([al ,∞)), l = 2, ..., q

Note that V is the quadratic functional of ϕ.
For q � 2, VarfNn [ϕ]g is asymptotically quasiperiodic in n , thus no
limit as n! ∞; its sublimits are indexed by x 2 Hq�1 2 Tq�1,
hence the family of CLT�s, indexed by x 2 Hq�1 (generalized CLT).
P. 06
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Hermitian Matrix Models
Limiting law

Zn [ϕ] := EV
n
e�N

�
n [ϕ]
o
"! "eΦ[ϕ], n! ∞

with

Φ[ϕ] =
Z 1

0
(1� s)V(x + sα[ϕ])ds

αl [ϕ] =
Z

δβl
δV (λ)

ϕ(λ)dλ, l = 1, ..., q � 1.

Zn has no limit as n! ∞ in general. The logarithms of its sublimits
(indexed by Hq�1) are not in general quadratic in ϕ (coinciding
asymptotically with " lim "n!∞VarV

�
Nn [ϕ]

	
/2), hence no (generalized)

CLT in general. P. 06
The "explanation" used for the Wigner matrices does not apply since the
entries of Mn are strongly dependent now.
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Hermitian Matrix Models
Example

ϕ = tλ, t 2 R, i.e., Nn = t
�
λ
(n)
1 + ...+ λ(n)n

�
,

V (λ) =
λ4

4
� c λ2

2
, c >

p
2, supp N = [�b,�a] [ [a, b]

hence β1 = 1/2 and Var
�
Nn [ϕ]

	
' t2(b2 + a2 � 2(�1)nab)/4

2-periodic.
However α1 = α[λ]jϕ=λ = a

�
K (a/b) , where K is the complete elliptic

integral of �rst kind and, is generically irrational and

Φ =
d0t2

2
+ A(x + α1t)� A(x)� α1tA0(x), fx = n/2g

d0 =
a2 + b2

4
6= " lim "n!∞Var

�
Nn
	
,

A(x) = ∑
m2Znf0g

dm(2πiα1m)�2e2πimx

Φ is quasiperiodic (and not quadratic!) in t.
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Matrix Elements of Functions of Wigner Matrices
LLN and Variance

Theorem

Let Mn = n�1/2Wn, Wn = fWjkgnj ,k=1 be real symmetric Wigner matrix
such that the 3rd and 4th moments of Wjk do not depend on j , k.
Consider ϕjj (Mn). where (1+ jtj)3bϕ(t) 2 L1(R). Then we have for any
jn ! ∞ as n! ∞ :

with probability 1

VWd [ϕ] : = lim
n!∞

nVarfϕjn jn (M)g

= V GOEd [ϕ] +
κ4
w8

� Z 2w

�2w
ϕ(µ)(w2 � µ2)ρsc (µ)dµ

�2
,

where ρsc is the density of the semicircle law.

Thus, the variance of ϕjn jn (M) is O(1/n) as for the GOE (although has
an additional term). Is the CLT the case?
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Matrix Elements of Functions of Wigner Matrices
Limiting Law

Theorem

Consider Mn = n�1/2Wn, Wn = fWjkgnj ,k=1, Wjk = (1+ δjk )
1/2Vjk ,

where Vjk , 1 � j � k � n are i.i.d. Assume that the logarithm of the
characteristic function Efe ixV11g is entire. Then

p
nϕ�jn jn (M) converges in

distribution as n! ∞ to the random variable ξ, such that

Efe ixξg = exp
n
�(VWd x2 + w2(x�)2)/2

o
Efe ix �V11g

where

x� =
x
w2

Z 2w

�2w
ϕ(µ)µρsc (µ)dµ.

Lytova, P. 10. "Almost" individual
Analogous result for in�nitely divisible fVjkg�s and ϕ 2 C 2 Lytova 10.

Eigenvectors are not too similar to those of GOE
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Tools:

Gaussian di¤erentiation formula (integration by parts):

Efξ lΦ(ξ)g = Efξ2l gEfΦ0
l (ξ)g, l = 1, ..., p;

Poincaré(Nash-Cherno¤) inequality:

VarfΦg �
p

∑
l=1

Efξ2l gE
�
jΦ0

l j2
	
,

valid for a collection fξ lg
p
l=1 of independent Gaussian random

variables.
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Bound for the Variance of Linear Eigenvalue Statistics

Observe that for the GOE fMjkg1�j�k�n are independent Gaussian,

VarfMjkg = w2(1+ δjk )/n

and
∂Trϕ(M)

∂Mjk
=
w2

n
(1+ δjk )ϕ

0
jk (M).

Then the Poincaré yields:

VarfTrϕ(M)g � 2w2Efn�1Trϕ0(M)(ϕ0(M))�g
� 2w2 sup

λ2R

jϕ0(M)j2!!!
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Semicircle Law

Consider the Stieltjes transform of Nn

gn(z) =
Z Nn(dλ)g

λ� z , =z 6= 0.

By spectral theorem gn(z) = n�1TrG (z), by resolvent identity

fn(z) := Efgn(z)g = z�1 + (zn)�1
n

∑
j ,k=1

EfMjkGkj (z)g,

by dif. formula fn(z) = z�1 + z�1Efg2n (z)g+O(1/n), and by the bound
for the variance

f (z) = z�1 + w2z�1f 2(z)

for limn!∞ fn = f uniformly on compacts of CnR. Then Im f (z) Im z > 0
and inversion formula give semicircle law for limn!∞ EfNng.
Bose, Chatterjee 04; P. 05
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Wigner Matrices

Martingale bounds EfjN�n (∆)j4g = O(n�2) instead of Poincaré Girko
70s

General di¤erentiation formula Khorunzhy et al 95 :
If Efjξjp+2g < ∞, p 2 N, Φ : R ! C of C p+1 with bounded
derivatives, then

EfξΦ(ξ)g = κ2EfΦ
0
(ξ)g+

p

∑
l=0

κl+1
l !
EfΦ(l)(ξ)g+ εp ,

jεp j � CpEfjξjp+2g sup
t2R

jΦ(p+1)(t)j,

where fκlg∞
l=1 are the cumulants of W12. Note that the l = 1 term is

"Gaussian".
"Interpolation trick" P. 00 : use the product space of the Wigner Mn

and the GOE bMn with the same �rst and second moments and set

Mn(s) = s1/2Mn + (1� s)1/2 bMn, 0 � s � 1,
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Matrix Models

Determinantal formulas for marginals of joint probability density:

pn,l (λ1, ...,λl ) :=
Z

Rn�l
pn,l (λ1, ...,λl ,λl+1...λn)dλl+1...dλn

= [n(n� 1)...(n� l + 1)]�1 detfKn(λj ,λk )glj ,k=1

where Kn is the reproducing kernel of fp(n)j g∞
j=0

In particularVarfNn [ϕ]g = 1
2

R R
(ϕ(λ1)� ϕ(λ2))2K 2n (λ1,λ2)dλ1

Asymptotics of p(n)n and p(n)n�1 Deift et al 97 - 99
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