Limit Theorems for Spectral Statistics of Random Matrices

L. Pastur

Institute for Low Temperatures, Kharkiv, Ukraine

Vienna, ?? February 2011

Pastur (MD ILT)

Introduction

CLT IS VALID

- Gaussian Matrices: LLN, CLT
- Wigner Matrices: LLN, CLT
- Sample Covariance Matrices: LLN, CLT
- Borel Type Theorem for Gaussian Matrices

CLT IS NOT VALID

- Hermitian Matrix Models
- Matrix Elements of Functions of Wigner Matrices

Introduction

Limit Theorems of Probability Theory (a reminder)

Let $\{\xi_l\}_{l=1}^n$ be i.i.d. r.v's with the probability law F and $\varphi: \mathbb{R} \to \mathbb{R}$ and $\mathcal{N}_n[\varphi] = \sum_{l=1}^n \varphi(\xi_l)$

be the linear statistic of $\{\xi_l\}_{l=1}^n$, corresponding to the test function φ .

• Law of Large Numbers (LLN): if ${\sf E}\{|\varphi(\xi_1)|\}<\infty$, then with probability 1

$$\lim_{n\to\infty}n^{-1}\mathcal{N}_n[\varphi]=\int\varphi(\lambda)F(d\lambda).$$

Introduction

Limit Theorems of Probability Theory (a reminder)

Let $\{\xi_l\}_{l=1}^n$ be i.i.d. r.v's with the probability law F and $\varphi: \mathbb{R} \to \mathbb{R}$ and $\mathcal{N}_n[\varphi] = \sum_{l=1}^n \varphi(\xi_l)$

be the linear statistic of $\{\xi_l\}_{l=1}^n$, corresponding to the test function φ .

• Law of Large Numbers (LLN): if ${\sf E}\{|\varphi(\xi_1)|\}<\infty,$ then with probability 1

$$\lim_{n\to\infty}n^{-1}\mathcal{N}_n[\varphi]=\int\varphi(\lambda)\mathcal{F}(d\lambda).$$

• Central Limit Theorem (CLT): if $\mathbf{E}\{\varphi^2(\xi_1)\} < \infty$ then $n^{-1/2}(\mathcal{N}_n[\varphi] - \mathbf{E}\{\mathcal{N}_n[\varphi]\})$ converges in distribution to the Gaussian r.v. with mean zero and variance

$$\mathbf{v}^2 = \lim_{n \to \infty} n^{-1} \mathsf{Var}\{\mathcal{N}_n[\varphi]\} = \mathsf{Var}\{\varphi(\xi_1)\}, \ \mathsf{Var}\{\eta\} := \mathsf{E}\{\eta^2\} - \mathsf{E}^2\{\eta\}$$

Note that for i.i.d. r.v.'s $\operatorname{Var}\{\mathcal{N}_n[\varphi]\} = O(n), n \to \infty$

• We have:

æ

- We have:
 - A sequence $\{M_n\}_n$ of $n \times n$ real symmetric or hermitian random matrices (random matrix), i.e., the matrix triangular array scheme;

- We have:
 - A sequence $\{M_n\}_n$ of $n \times n$ real symmetric or hermitian random matrices (random matrix), i.e., the matrix triangular array scheme;
 - eigenvalues $\{\lambda_l^{(n)}\}_{l=1}^n$ and eigenvectors $\{\psi_l^{(n)}\}_{l=1}^n$ of M_n

- We have:
 - A sequence $\{M_n\}_n$ of $n \times n$ real symmetric or hermitian random matrices (random matrix), i.e., the matrix triangular array scheme;
 - eigenvalues $\{\lambda_l^{(n)}\}_{l=1}^n$ and eigenvectors $\{\psi_l^{(n)}\}_{l=1}^n$ of M_n
 - spectral statistics $S_n : \left\{ \{\lambda_l^{(n)}\}_{l=1}^n, \{\psi_l^{(n)}\}_{l=1}^n\} \right\} \to \mathbb{R}$, in particular

- We have:
 - A sequence $\{M_n\}_n$ of $n \times n$ real symmetric or hermitian random matrices (random matrix), i.e., the matrix triangular array scheme;
 - eigenvalues $\{\lambda_l^{(n)}\}_{l=1}^n$ and eigenvectors $\{\psi_l^{(n)}\}_{l=1}^n$ of M_n
 - spectral statistics $S_n : \left\{ \{\lambda_l^{(n)}\}_{l=1}^n, \{\psi_l^{(n)}\}_{l=1}^n\} \right\} \to \mathbb{R}$, in particular
 - linear eigenvalue statistics for a given test function $arphi:\mathbb{R}
 ightarrow\mathbb{R}$

$$\mathcal{N}_n[\varphi] := \sum_{l=1}^n \varphi\left(\lambda_l^{(n)}\right) = \operatorname{Tr} \varphi(M_n)$$

- We have:
 - A sequence $\{M_n\}_n$ of $n \times n$ real symmetric or hermitian random matrices (random matrix), i.e., the matrix triangular array scheme;
 - eigenvalues $\{\lambda_l^{(n)}\}_{l=1}^n$ and eigenvectors $\{\psi_l^{(n)}\}_{l=1}^n$ of M_n
 - spectral statistics $S_n : \left\{ \{\lambda_l^{(n)}\}_{l=1}^n, \{\psi_l^{(n)}\}_{l=1}^n\} \right\} \to \mathbb{R}$, in particular
 - ullet linear eigenvalue statistics for a given test function $arphi:\mathbb{R} o\mathbb{R}$

$$\mathcal{N}_n[\varphi] := \sum_{l=1}^n \varphi\left(\lambda_l^{(n)}\right) = \operatorname{Tr} \varphi(M_n)$$

 We are interested in the limiting laws of S_n and N_n as n → ∞. (possibly after a certain additive and/or multiplicative normalization (recall LLN and CLT for i.i.d. r.v.'s).

Gaussian Matrices

Description

Set
$$M_n = n^{-1/2} W_n$$
, $W_n = \{W_{jk}\}_{j,k=1}^n$

$$P_n(dW) = Z_n^{-1} e^{-\operatorname{Tr} W^2/2w^2} \prod_{1 \le j \le n} dW_{jj} \prod_{1 \le j \le k \le n} d\operatorname{Re} W_{jk} d\operatorname{Im} W_{jk}.$$

Since

$$\operatorname{Tr} W_n^2 = \sum_{1 \le j \le n} W_{jj}^2 + 2 \sum_{1 \le j \le k \le n} |W_{jk}|^2,$$

the above implies that $\{W_{jk}\}_{1\leq j\leq k\leq n}$ are independent Gaussian random variables such that

$$\mathbf{E}\{W_{jk}\} = \mathbf{E}\{W_{jk}^2\} = 0, \ \mathbf{E}\{|W_{jk}|^2\} = w^2(1+\delta_{jk})/2.$$

Gaussian Unitary Ensemble (GUE)

Pastur (MD ILT)

3

Take the GOE for n = 2, i.e.,

$$Z_2^{-1}e^{-\mathrm{Tr}M^2/2w^2}dM_{11}dM_{22}d\operatorname{Re}M_{12}d\operatorname{Im}M_{12}.$$

and find the joint distribution of (λ_1, λ_2) :

$$Q_2^{-1}e^{-(\lambda_1^2+\lambda_2^2)/2w^2}|\lambda_1-\lambda_2|^2d\lambda_1d\lambda_2$$
,

since

$$\lambda_{1,2} = \frac{(M_{11} + M_{22}) \mp \sqrt{(M_{11} - M_{22})^2 + |M_{12}|^2}}{2}$$

Eigenvalues are strongly dependent even if the matrix elements are not!

Theorem

Let M_n be the GUE matrix and $\mathcal{N}_n[\varphi]$ be a linear eigenvalue statistics of its eigenvalues. Then we have for any bounded and continuous $\varphi : R \to C$ with probability 1:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{l=1}^{n}\varphi\left(\lambda_{l}^{(n)}\right)=\int\varphi(\lambda)N_{scl}(d\lambda),$$

where the measure

$$N_{sc}(d\lambda) =
ho_{sc}(\lambda) d\lambda$$
, $ho_{sc}(\lambda) = (2\pi w^2)^{-1} \sqrt{4w^2 - \lambda^2} \mathbf{1}_{|\lambda| \leq 2w}$

is known as the Wigner or the semicircle law.

Wigner 52 and many others.

Pastur (MD ILT)

Take the Gaussian matrix with non-zero mean: $H_n = H_{0,n} + M_n$, assume that the Normalizing Counting Measure (NCM) $N_{0,n}$ of eigenvalues of $H_{0,n}$ (which can be random but independent of M_n) converges weakly to N_0 . Then the NCM N_n of H_n converges weakly with probability 1 to a non-random limit N (hence any linear eigenvalue statistics with bounded and continuous test function does) and if

$$f(z) = \int rac{N(d\lambda)}{\lambda-z}, \ \Im z
eq 0;$$

is its Stieltjes transform and f_0 is that for N_0 , then $f(z) = f_0(z + w^2 f(z))$ and the equation is uniquely solvable in the class of functions analytic in $\mathbb{C} \setminus \mathbb{R}$ and such that $\operatorname{Im} f(z) \operatorname{Im} z > 0$, $\operatorname{Im} z \neq 0$ (Nevanlinna class \mathcal{N}) and $f(z) = -z^{-1} + o(z^{-1}), z \to \infty$.

This is known as the deformed semicircle law P. 72.

3

Theorem

Let M_n be the GUE matrix, $\varphi : \mathbb{R} \to \mathbb{R}$ be a differentiable function with a polynomially bounded derivative. Then $\mathcal{N}_n[\varphi] - \mathbf{E}\{\mathcal{N}_n[\varphi]\}$!!! converges in distribution to the Gaussian random variable with zero mean and the variance

$$V_{GOE}[\varphi] = \frac{1}{4\pi^2} \int_{-2w}^{2w} \int_{-2w}^{2w} \left(\frac{\varphi(\lambda_1) - \varphi(\lambda_2)}{\lambda_1 - \lambda_2}\right)^2 \\ \times \frac{4w^2 - \lambda_1\lambda_2}{\sqrt{4w^2 - \lambda_1^2}\sqrt{4w^2 - \lambda_2^2}} d\lambda_1 d\lambda_2.$$

Khorunzhy, Khoruzhenko, P. 96; Johansson 98; Guionnet et al 2000's and others

$$\operatorname{Var}\{\mathcal{N}_n[\varphi]\} = O(1), \ n \to \infty \ \mathsf{A} \ \mathsf{PUZZLE} ?!$$

Gaussian Matrices

Variance and the CLT: "Explanations"

LLN $\implies \lambda_l^{(n)} = O(1), n \to \infty$, moreover, asymptotically are in [-2w, 2w] with p.1, i.e.,

$$\mathcal{N}_n[\varphi] - \mathsf{E}\{\mathcal{N}_n[\varphi]\} = \sum_{l=1}^n O(1),$$

thus the CLT could result from the strong cancelations of terms. Examples: recall that $M_n = n^{-1/2} W_n$ and consider:

(i)
$$\varphi(\lambda) = \lambda$$
, where $\sum_{l=1}^{n} \lambda_{l}^{(n)} = \operatorname{Tr} M = n^{-1/2} \sum_{j=1}^{n} W_{jj}$
is Gaussian by definition;
(ii) $\varphi(\lambda) = \lambda^{2}$, where $\sum_{j,k=1}^{n} (\lambda_{l}^{(n)})^{2} = \operatorname{Tr} M^{2} = n^{-1} \sum_{j,k=1}^{n} |W_{jk}|^{2}$

is asymptotically Gaussian by standard CL1. The "same" for sufficiently regular φ .

Pastur (MD ILT)

Take hermitian matrices A_n and B_n having limiting NCM's N_A and N_B and the Haar distributed unitary matrix U_n and write

$$H_n = A_n + U_n B_n U_n^* \tag{1}$$

Analogous real symmetric matrices with the orthogonal Haar distributed matrix instead of the unitary.

The model is known since long time but became popular after *Voiculescu* works of the 80s-90s and free probability.

Let $\{\beta_l\}_{l=1}^n$ and $\{b_l\}_{l=1}^n$ be the eigenvalues and eigenvectors of B_n . Then

$$H_n = A_n + \sum_{l=1}^n \beta_l P_{q_l},$$

where $\{P_{q_l}\}_{l=1}^n$ are the orthogonal projections on the random vectors $\{q_l\}_{l=1}^n$ uniformly distributed over the the unit sphere in \mathbb{C}^n , modulo their pairwise orthogonality. Removing this restriction, we obtain the i.i.d. random vectors uniformly distributed over the the unit sphere in \mathbb{C}^n . This case was considered by *Marchenko*, *P.* 67.

The cases of the deformed GUE and the deformed Laguerre Ensemble $M_n = X * X$, $X = \{X_j k\}_{j,k=1}^n$ are also the particular cases of (1) with certain random B_n .

It can be proved then that the NCM of H_n converges weakly with probability 1 to a non-random limit Nwhose Stiletjes transform solves the system

$$\begin{cases} f_{A_1+A_2}(z) = f_{A_1}(h_{A_1}(z)), \\ f_{A_1+A_2}(z) = f_{A_2}(h_{A_2}(z)), \\ f_{A_1+A_2}^{-1}(z) = z - h_{A_1}(z) - h_{A_2}(z), \end{cases}$$

where f_A and f_B the Stieltjes transforms of N_A and N_B and $h_{A_{1,2}}(z)$ analytic in $\mathbb{C}\setminus\mathbb{R}$, $h_{A_{1,2}}(z) = z + o(z)$, $z \to \infty$. *Voiculescu 80s; Speicher 90s; P., Vasilchuk 00*, 07 with a long and then a short and transparent one, based on a version of the Poincaré inequality for classical groups. Consider $H_n = A_n + U_n B_n U_n^*$ and assume

$$\sup_{n} \max\left\{\int |\lambda|^4 N_{n,\mathcal{A}}(d\lambda), \int |\lambda|^4 N_{n,\mathcal{B}}(d\lambda)\right\} < \infty.$$

Then $\overset{\circ}{\gamma}_n(z) = \gamma_n(z) - \mathbf{E} \{\gamma_n(z)\}$, where $\gamma_n(z) = \operatorname{Tr} (H - z)^{-1}$ and $z \in \mathbb{C} \setminus \mathbb{R}$, converges in distribution to the complex Gaussian random variable $\gamma(z)$ with zero means and the covariances

$$\begin{split} & \mathsf{Var}\{\Re\gamma(z)\} &= 2^{-1}\Re(S(z,z)+S(z,\overline{z})),\\ & \mathsf{Var}\{\Im\gamma(z)\} &= -2^{-1}\Re(S(z,z)-S(z,\overline{z})),\\ & \mathsf{Cov}\{\Re\gamma(z),\Im\gamma(z)\} &= 2^{-1}\Im(S(z,z)-S(z,\overline{z})), \end{split}$$

in which

$$S(z_1, z_2) = \frac{\partial^2}{\partial z_1 \partial z_2} \log \frac{(h_A(z_1) - h_A(z_2))(h_B(z_1) - h_B(z_2))}{(z_1 - z_2)(f^{-1}(z_1) - f^{-1}(z_2))}$$

is limit the of $\mathbf{Cov}\{\gamma_n(z_1), \gamma_n(z_2)\}$ as $n \to \infty$, and $h_{A,B}$ and f are as above.

Since

$$\gamma_n(z) = \sum_{l=1}^n \left(\lambda_l^{(n)} - z\right)^{-1}$$

and its variance is O(1) but not O(n), we have the same phenomenon of strong cancellation as for the Gaussian Ensembles. Related results by *Speicher et al.*

$$M_n = n^{-1/2} W_n, W_n = \{W_{jk}\}_{j,k=1}^n$$

with $W_{jk} = W_{kj} \in \mathbb{R}, 1 \le j \le k \le n$ independent and
 $\mathbf{E}\{W_{jk}\} = 0, \quad \mathbf{E}\{W_{jk}^2\} = (1 + \delta_{jk})w^2,$

i.e. the two first moments of the entries coincide with those of the GOE or

$$\mathbf{P}(dW_n) = \prod_{1 \le j \le k \le n} F_{jk}(dW_{jk}),$$

where F_{jk} has above moments. The GOE corresponds to

$$F_{jk}(dW) = rac{1}{(2\pi\sigma_{jk}^2)^{1/2}}e^{-W^2/2\sigma_{jk}^2}dW, \quad \sigma_{jk}^2 = (1+\delta_{jk})w^2.$$

Wigner Ensembles

(i) Law of Large Numbers

Theorem

Let $M_n = n^{-1/2} W_n$ be the Wigner matrix and N_n be the Normalized Counting Measure of its eigenvalues. We have (i) if $\sup_{j,k} \mathbf{E}\{|W_{jk}|^{2+\delta}\} < \infty$ for some $\delta > 0$, then the semicrcle law is valid with probability 1:

P 72, Girko 75 The LLN is the same as for Gaussian matrices (macroscopic universality) P 72, Girko 75;

(ii) if

$$w_6:=\sup_{j,k}\mathbf{E}\{(W_{jk}^6\}<\infty,$$

Limit Theorems

•2w

Vienna, ?? February 2011

17 / 38

and $(1+|t|^5)|\widehat{\varphi}(t)| \in L^1(\mathbb{R}, \text{ then } \mathcal{N}_n[\varphi] - \mathbf{E}\{\mathcal{N}_n[\varphi]\} \text{ obeys (!?) the CLT with the variance}$

Pastur (MD ILT)

Theorem

Let U_n be a $n \times n$ unitary random matrix, whose probability law is the normalized Haar measure on U(n), and A_n be a $n \times n$ matrix such that

$$\lim_{n\to\infty}n^{-1}\mathrm{Tr}A_n^*A_n=1.$$

Then $\operatorname{Tr} U_n A_n$ converges in distribution to the standard complex Gaussian variable: $\gamma = \gamma_1 + i\gamma_2$, $\mathbf{E}\{\gamma_1\} = \mathbf{E}\{\gamma_1\} = 0$, $\mathbf{E}\{\gamma_1^2\} = \mathbf{E}\{\gamma_2^2\} = 1/2$.

E. Borel 1905 ($A_n = {\delta_{j1}\delta_{k1}}_{j,k=1}^n$, Tr $U_nA_n = O_{11}$), Diaconis et al 2003; Collins, Stolz 2006; P. 2007.

Borel Type Theorems Heuristics

Not linear eigenvalue statistics

$$\operatorname{Tr} \varphi(M_n) = \sum_{j=1}^n \varphi_{jj}(M_n) = \sum_{l=1}^n \varphi(\lambda_l^{(n)})$$

but a (simple) spectral statistic

$$\varphi_{jj}(M_n) = \sum_{l=1}^n \varphi(\lambda_l^{(n)}) |\psi_l^{(n)}|^2.$$

Since

$$\sum_{l=1}^{n} |\psi_{l}^{(n)}|^{2} = 1$$

 $|\psi_l^{(n)}|^2 \simeq 1/n$, it is reasonable to believe that $\varphi_{jj}(M_n)$ is to be asymptotically "analogous" to $1/n \times$ linear eigenvalue statistics.

3

Borel Type Theorems

Gaussian Matrices

Theorem

Let M_n be the GOE matrix and $\varphi : \mathbb{R} \to \mathbb{R}$ is continuous. We have for any $j_n \to \infty$ as $n \to \infty$

•
$$\mathsf{E}\{arphi_{j_nj_n}(M_n)\})=\mathsf{E}\{n^{-1}\mathrm{Tr}arphi(M_n)\}$$
 and with p. 1

$$\lim_{n\to\infty}\varphi_{jj}(M)=\int\varphi(\lambda)N_{scl}(d\lambda);$$

• $\lim_{n\to\infty} n \mathbf{Var} \{ \varphi_{j_n j_n}(M_n) \} = V_{GOE}^{(d)}[\varphi]$, where

$$V_{GOE}^{(d)}[arphi] = rac{1}{2}\int\int |arphi(\lambda_1) - arphi(\lambda_2)|^2 extsf{N}_{scl}(d\lambda_1) extsf{N}_{scl}(d\lambda_2);$$

• $n^{1/2}(\varphi_{j_n j_n}(M_n) - \mathbf{E}\{\varphi_{jj}(M_n)\})$ obey the CLT with variance $V_{GOE}^{(d)}[\varphi]$

Lytova, P. 09 LLN as for the traces, the variance is $O(n^{-1})$ and the $CLT_{0,0,0}$ Pastur (MD ILT) Limit Theorems Vienna, ?? February 2011 20 / 38

Borel Type Theorems

One distinguish now the cases

$$H_n = A_n + U_n^* B U_n, \tag{2}$$

and

$$\tilde{H} = V_n^* A_n V_n + U_n^* B_n U_n.$$
(3)

which have the same results for the eigenvalue statistics (by the shift invariance of the Haar measure and unitary invariance of eigenvalues). Assume that $\sup_n ||A_n||, ||B_n|| < \infty$ and denote $G_n(z)$ the resolvent one of above random matrices.

Then we have in both cases the same LLN, i.e., the convergence with probability 1 of $(G_n(z))_{kk}$ to the same limit as $n^{-1}\text{Tr}G_n(z)$, i.e., for the solution of the above system.

However, this is not the case for the fluctuations. Here we have

$$\mathbf{Cov}\{(G_n(z_1))_{kk}, (G_n(z_2))_{kk}\} = \frac{1}{n}T_n(z_1, z_2) + r_n(z_1, z_2), \ z_{1,2} \in \mathbb{C} \setminus \mathbb{R}$$

where in the case of (2)

Pastur (MD ILT)

and in the case of (3)

$$T_n(z_1, z_2) = \frac{\delta f}{\delta z} - f(z_1)f(z_2)$$
(4)

in which

$$\delta z = z_1 - z_2, \ \delta f = f(z_1) - f(z_2), \delta h_B = h_B(z_1) - h_B(z_2), \ G_A(z) = (A - zI)^{-1}$$

and the remainder $r_n(z_1, z_2)$ admits the bound

$$|r_n(z_1, z_2)| \leq C/n^{3/2},$$

where *C* is independent of *n* and is finite if $\min\{|\Im z_1|, |\Im z_2|\} > 0$. Moreover, the CLT with this variance is valid for sufficiently wide class of test functions.

Thus the situation is similar to that in the probability theory.

Matrix Elements of Functions of Wigner Matrices

Theorem

Let $M_n = n^{-1/2} W_n$, $W_n = \{W_{jk}\}_{j,k=1}^n$ be real symmetric Wigner matrix such that the 3rd and 4th moments of W_{jk} do not depend on j, k. Consider $\varphi_{jj}(M_n)$. where $(1 + |t|)^3 \widehat{\varphi}(t) \in L^1(\mathbb{R})$. Then we have for any $j_n \to \infty$ as $n \to \infty$:

• with probability 1

$$V_d^W[\varphi] := \lim_{n \to \infty} n \operatorname{Var} \{ \varphi_{j_n j_n}(M) \}$$
$$= V_d^{GOE}[\varphi] + \frac{\kappa_4}{w^8} \Big(\int_{-2w}^{2w} \varphi(\mu) (w^2 - \mu^2) \rho_{sc}(\mu) d\mu \Big)^2,$$

where $\rho_{\rm sc}$ is the density of the semicircle law.

Thus, the variance of $\varphi_{j_n j_n}(M)$ is O(1/n) as for the GOE (although has an additional term). Is the CLT the case?

Pastur (MD ILT)

Matrix Elements of Functions of Wigner Matrices

Theorem

Consider $M_n = n^{-1/2} W_n$, $W_n = \{W_{jk}\}_{j,k=1}^n$, $W_{jk} = (1 + \delta_{jk})^{1/2} V_{jk}$, where V_{jk} , $1 \le j \le k \le n$ are i.i.d. Assume that the logarithm of the characteristic function $\mathbf{E}\{e^{ixV_{11}}\}$ is entire. Then $\sqrt{n}\varphi_{j,j_n}^{\circ}(M)$ converges in distribution as $n \to \infty$ to the random variable ξ , such that

$$\mathbf{E}\{e^{ix\xi}\} = \exp\left\{-(V_d^W x^2 + w^2(x^*)^2)/2\right\} \mathbf{E}\{e^{ix^*V_{11}}\}$$

where

$$x^* = \frac{x}{w^2} \int_{-2w}^{2w} \varphi(\mu) \mu \rho_{sc}(\mu) d\mu.$$

Lytova, P. 10. "Almost" individual Analogous result for infinitely divisible $\{V_{jk}\}$'s and $\varphi \in C^2$ Lytova 10. Eigenvectors are not too similar to those of GOE

Pastur (MD ILT)

Matrix Elements of Functions of Wigner Matrices Examples

(i) $\varphi(\lambda) = \lambda$:

$$n^{1/2}\varphi_{jj}(M_n) = W_{jj} = \begin{cases} \text{Gaussian,} & \text{GOE,} \\ \text{any,} & \text{Wigner} \neq \text{GOE} \end{cases}$$
(ii) $\varphi(\lambda) = \lambda^2$:

$$n^{1/2}\varphi_{jj}(M_n) = n^{-1/2}\sum_{k=1}^n W_{jk}^2$$

is asymptotically Gaussian by standard CLT.

The "same" for sufficiently regular φ 's, since the "renormalized" argument x^* of $E\{e^{ixV_{11}}\}$ is

$$x^* = \begin{cases} \text{proportional } x & \varphi \text{ is odd,} \\ 0, & \varphi \text{ is even.} \end{cases}$$

Hermitian Matrix Models Description

$$Z_n^{-1} \exp\{-\operatorname{Tr} V(M_n)\} dM_n$$
$$dM_n = \prod_{j=1}^n dM_{jj} \prod_{1 \le j < k \le n} d\Re M_{jk} d\Im M_{jk},$$

 $V:\mathbb{R}
ightarrow\mathbb{R}_+$ is a continuous function (potential), and

 $\exists \ \varepsilon > 0, \ L < \infty \quad V(\lambda) \geq (2 + \varepsilon) \log(1 + |\lambda|) > 0, \ |\lambda| \geq L$

 $V = \lambda^2/2$ corresponds to the Gaussian Unitary Ensemble (GUE). In fact, (Wigner Matrices) \bigcap (Matrix Models) = (Gaussian Matrices)

Strongly dependent entries, e.g. for $V = \lambda^4$

For any non-negative measure m of unit mass on ${\mathbb R}$ define (Gauss)

$$\mathcal{E}[m] = \int V(\lambda) m(d\lambda) - \int \int \log |\lambda - \mu| m(d\lambda) m(d\mu),$$

and let N be a unique minimizer of \mathcal{E} : $\inf_m \mathcal{E}[m] = \mathcal{E}(N)$. Then for $V' \in Lip_{loc}1$ with probability 1 in weak sense

$$\lim_{n\to\infty}n^{-1}\mathcal{N}_n=N,\ N(d\lambda)=\rho(\lambda)d\lambda,$$

Wigner 52; Brezin et al 79; A. Boutet de Monvel, P., Shcherbina 95; Deift et al 98; Johansson, 98 If V is convex, then supp N = [a, b] and if V is real analytic, then

$$\operatorname{supp} N = \bigcup_{l=1}^{q} [a_l, b_l], \ 1 \leq q < \infty.$$

• O(1) bound for Lip_1 test functions P., Shcherbina 97

э

- O(1) bound for Lip₁ test functions P., Shcherbina 97
- Asymptotic form

$$\mathbf{Var}ig\{\mathcal{N}_n[arphi]ig\}\simeq\mathcal{V}(neta),$$

$$\mathcal{V}: \mathbb{T}^{q-1} \to \mathbb{R}_+, \ \beta_I = \mathcal{N}([\mathbf{a}_I, \infty)), \ I = 2, ..., q$$

Note that \mathcal{V} is the quadratic functional of φ . For $q \geq 2$, $\operatorname{Var}\{\mathcal{N}_n[\varphi]\}$ is asymptotically quasiperiodic in n, thus no limit as $n \to \infty$; its sublimits are indexed by $x \in \mathbb{H}^{q-1} \in \mathbb{T}^{q-1}$, hence the family of CLT's, indexed by $x \in \mathbb{H}^{q-1}$ (generalized CLT). *P. 06*

Hermitian Matrix Models Limiting law

$$Z_n[\varphi] := \mathbf{E}_V \left\{ e^{-\mathcal{N}_n^{\circ}[\overline{\varphi}]} \right\} " \to " e^{\Phi[\varphi]}, \quad n \to \infty$$

with

$$\Phi[\varphi] = \int_0^1 (1-s) \mathcal{V}(x+s\alpha[\varphi]) ds$$
$$\alpha_I[\varphi] = \int \frac{\delta\beta_I}{\delta V(\lambda)} \varphi(\lambda) d\lambda, \ I = 1, ..., q-1.$$

 Z_n has no limit as $n \to \infty$ in general. The logarithms of its sublimits (indexed by \mathbb{H}^{q-1}) are not in general quadratic in φ (coinciding asymptotically with " lim" $_{n\to\infty}$ **Var**_V { $\mathcal{N}_n[\varphi]$ }/2), hence no (generalized) CLT in general. *P. 06* The "explanation" used for the Wigner matrices does not apply since the

entries of M_n are strongly dependent now.

Hermitian Matrix Models Example

$$\varphi = t\lambda$$
, $t \in \mathbb{R}$, i.e., $\mathcal{N}_n = t(\lambda_1^{(n)} + ... + \lambda_n^{(n)})$,
 $V(\lambda) = \frac{\lambda^4}{4} - c\frac{\lambda^2}{2}$, $c > \sqrt{2}$, $\operatorname{supp} N = [-b, -a] \cup [a, b]$
hence $\beta_1 = 1/2$ and $\operatorname{Var} \{\mathcal{N}_n[\varphi]\} \simeq t^2(b^2 + a^2 - 2(-1)^n ab)/4$

2-periodic.

However $\alpha_1 = \alpha[\lambda]|_{\varphi=\lambda} = a/K(a/b)$, where K is the complete elliptic integral of first kind and, is generically irrational and

$$\begin{split} \Phi &= \frac{d_0 t^2}{2} + A(x + \alpha_1 t) - A(x) - \alpha_1 t A'(x), \ \{x = n/2\} \\ d_0 &= \frac{a^2 + b^2}{4} \neq "\lim "_{n \to \infty} \operatorname{Var} \{\mathcal{N}_n\}, \\ A(x) &= \sum_{m \in \mathbb{Z} \setminus \{0\}} d_m (2\pi i \alpha_1 m)^{-2} e^{2\pi i m x} \end{split}$$

 Φ is quasiperiodic (and not quadratic!) in t.

Pastur (MD ILT)

Matrix Elements of Functions of Wigner Matrices

Theorem

Let $M_n = n^{-1/2} W_n$, $W_n = \{W_{jk}\}_{j,k=1}^n$ be real symmetric Wigner matrix such that the 3rd and 4th moments of W_{jk} do not depend on j, k. Consider $\varphi_{jj}(M_n)$. where $(1 + |t|)^3 \widehat{\varphi}(t) \in L^1(\mathbb{R})$. Then we have for any $j_n \to \infty$ as $n \to \infty$:

• with probability 1

$$V_d^W[\varphi] := \lim_{n \to \infty} n \operatorname{Var} \{ \varphi_{j_n j_n}(M) \}$$
$$= V_d^{GOE}[\varphi] + \frac{\kappa_4}{w^8} \Big(\int_{-2w}^{2w} \varphi(\mu) (w^2 - \mu^2) \rho_{sc}(\mu) d\mu \Big)^2,$$

where $\rho_{\rm sc}$ is the density of the semicircle law.

Thus, the variance of $\varphi_{j_n j_n}(M)$ is O(1/n) as for the GOE (although has an additional term). Is the CLT the case?

Pastur (MD ILT)

Matrix Elements of Functions of Wigner Matrices

Theorem

Consider $M_n = n^{-1/2} W_n$, $W_n = \{W_{jk}\}_{j,k=1}^n$, $W_{jk} = (1 + \delta_{jk})^{1/2} V_{jk}$, where V_{jk} , $1 \le j \le k \le n$ are i.i.d. Assume that the logarithm of the characteristic function $\mathbf{E}\{e^{ixV_{11}}\}$ is entire. Then $\sqrt{n}\varphi_{j,j_n}^{\circ}(M)$ converges in distribution as $n \to \infty$ to the random variable ξ , such that

$$\mathbf{E}\{e^{ix\xi}\} = \exp\left\{-(V_d^W x^2 + w^2(x^*)^2)/2\right\} \mathbf{E}\{e^{ix^*V_{11}}\}$$

where

$$x^* = \frac{x}{w^2} \int_{-2w}^{2w} \varphi(\mu) \mu \rho_{sc}(\mu) d\mu.$$

Lytova, P. 10. "Almost" individual Analogous result for infinitely divisible $\{V_{jk}\}$'s and $\varphi \in C^2$ Lytova 10. Eigenvectors are not too similar to those of GOE

Pastur (MD ILT)

Pastur (MD ILT)

Tools:

• Gaussian differentiation formula (integration by parts):

$$\mathsf{E}\{\xi_I \Phi(\xi)\} = \mathsf{E}\{\xi_I^2\}\mathsf{E}\{\Phi_I'(\xi)\}, \ I = 1, ..., p;$$

2

Tools:

• Gaussian differentiation formula (integration by parts):

$${\sf E}\{\xi_I \Phi(\xi)\} = \; {\sf E}\{\xi_I^2\} {\sf E}\{\Phi_I'(\xi)\}, \; I=1,...,p;$$

Poincaré(Nash-Chernoff) inequality:

$$\mathbf{Var}\{\Phi\}\leq \sum_{l=1}^p\mathbf{E}\{\xi_l^2\}\mathbf{E}\left\{|\Phi_l'|^2
ight\}$$
 ,

valid for a collection $\{\xi_l\}_{l=1}^p$ of independent Gaussian random variables.

Observe that for the GOE $\{M_{jk}\}_{1 \le j \le k \le n}$ are independent Gaussian,

$$\mathbf{Var}\{M_{jk}\} = w^2(1+\delta_{jk})/n$$

and

$$rac{\partial \mathrm{Tr} \varphi(M)}{\partial M_{jk}} = rac{w^2}{n} (1 + \delta_{jk}) \varphi_{jk}'(M).$$

Then the Poincaré yields:

1

$$\mathsf{Var}\{\mathrm{Tr}\varphi(M)\} \leq 2w^{2}\mathsf{E}\{n^{-1}\mathrm{Tr}\varphi'(M)(\varphi'(M))^{*}\}$$
$$\leq 2w^{2}\sup_{\lambda\in\mathbb{R}}|\varphi'(M)|^{2}!!!$$

Pastur (MD ILT)

Semicircle Law

Consider the Stieltjes transform of N_n

$$g_n(z) = \int \frac{N_n(d\lambda)}{\lambda - z}, \ \Im z \neq 0.$$

By spectral theorem $g_n(z) = n^{-1} \text{Tr} G(z)$, by resolvent identity

$$f_n(z) := \mathbf{E}\{g_n(z)\} = z^{-1} + (zn)^{-1} \sum_{j,k=1}^n \mathbf{E}\{M_{jk} G_{kj}(z)\},$$

by dif. formula $f_n(z) = z^{-1} + z^{-1} \mathbf{E} \{g_n^2(z)\} + O(1/n)$, and by the bound for the variance

$$f(z) = z^{-1} + w^2 z^{-1} f^2(z)$$

for $\lim_{n\to\infty} f_n = f$ uniformly on compacts of $\mathbb{C}\setminus\mathbb{R}$. Then $\operatorname{Im} f(z) \operatorname{Im} z > 0$ and inversion formula give semicircle law for $\lim_{n\to\infty} \mathbf{E}\{N_n\}$. Bose, Chatterjee 04; P. 05

Wigner Matrices

• Martingale bounds $\mathbf{E}\{|N_n^{\circ}(\Delta)|^4\} = O(n^{-2})$ instead of Poincaré *Girko* 70s

э

Wigner Matrices

- Martingale bounds $\mathbf{E}\{|N_n^{\circ}(\Delta)|^4\} = O(n^{-2})$ instead of Poincaré *Girko 70s*
- General differentiation formula Khorunzhy et al 95: If E{|ζ|^{p+2}} < ∞, p ∈ N, Φ : ℝ → C of C^{p+1} with bounded derivatives, then

$$\begin{aligned} \mathsf{E}\{\xi\Phi(\xi)\} &= \kappa_2 \mathsf{E}\{\Phi'(\xi)\} + \sum_{l=0}^{p} \frac{\kappa_{l+1}}{l!} \mathsf{E}\{\Phi^{(l)}(\xi)\} + \varepsilon_p, \\ |\varepsilon_p| &\leq C_p \mathsf{E}\{|\xi|^{p+2}\} \sup_{t\in\mathbb{R}} |\Phi^{(p+1)}(t)|, \end{aligned}$$

where $\{\kappa_l\}_{l=1}^{\infty}$ are the cumulants of W_{12} . Note that the l = 1 term is "Gaussian".

Wigner Matrices

- Martingale bounds $\mathbf{E}\{|N_n^{\circ}(\Delta)|^4\} = O(n^{-2})$ instead of Poincaré *Girko 70s*
- General differentiation formula Khorunzhy et al 95: If E{|ζ|^{p+2}} < ∞, p ∈ N, Φ : ℝ → C of C^{p+1} with bounded derivatives, then

$$\begin{aligned} \mathbf{\mathsf{E}}\{\boldsymbol{\mathsf{\xi}}\Phi(\boldsymbol{\mathsf{\xi}})\} &= \kappa_2 \mathbf{\mathsf{E}}\{\Phi'(\boldsymbol{\mathsf{\xi}})\} + \sum_{l=0}^{p} \frac{\kappa_{l+1}}{l!} \mathbf{\mathsf{E}}\{\Phi^{(l)}(\boldsymbol{\mathsf{\xi}})\} + \varepsilon_p, \\ &|\varepsilon_p| &\leq C_p \mathbf{\mathsf{E}}\{|\boldsymbol{\mathsf{\xi}}|^{p+2}\} \sup_{t\in\mathbb{R}} |\Phi^{(p+1)}(t)|, \end{aligned}$$

- where $\{\kappa_l\}_{l=1}^{\infty}$ are the cumulants of W_{12} . Note that the l = 1 term is "Gaussian".
- "Interpolation trick" P. 00: use the product space of the Wigner M_n and the GOE M_n with the same first and second moments and set

$$M_n(s) = s^{1/2}M_n + (1-s)^{1/2}\widehat{M}_n, \quad 0 \le s \le 1,$$

• Determinantal formulas for marginals of joint probability density:

$$p_{n,l}(\lambda_1, ..., \lambda_l) := \int_{\mathbb{R}^{n-l}} p_{n,l}(\lambda_1, ..., \lambda_l, \lambda_{l+1} ... \lambda_n) d\lambda_{l+1} ... d\lambda_n$$
$$= [n(n-1) ... (n-l+1)]^{-1} \det\{K_n(\lambda_j, \lambda_k)\}_{j,k=1}^l$$

where K_n is the reproducing kernel of $\{p_j^{(n)}\}_{j=0}^{\infty}$

3

• Determinantal formulas for marginals of joint probability density:

$$p_{n,l}(\lambda_1, ..., \lambda_l) := \int_{\mathbb{R}^{n-l}} p_{n,l}(\lambda_1, ..., \lambda_l, \lambda_{l+1} ... \lambda_n) d\lambda_{l+1} ... d\lambda_n$$
$$= [n(n-1) ... (n-l+1)]^{-1} \det\{K_n(\lambda_j, \lambda_k)\}_{j,k=1}^l$$

where K_n is the reproducing kernel of $\{p_i^{(n)}\}_{i=0}^{\infty}$

• In particular $\operatorname{Var} \{ \mathcal{N}_n[\varphi] \} = \frac{1}{2} \int \int (\varphi(\lambda_1) - \varphi(\lambda_2))^2 \mathcal{K}_n^2(\lambda_1, \lambda_2) d\lambda_1$

• Determinantal formulas for marginals of joint probability density:

$$p_{n,l}(\lambda_1, ..., \lambda_l) := \int_{\mathbb{R}^{n-l}} p_{n,l}(\lambda_1, ..., \lambda_l, \lambda_{l+1} ... \lambda_n) d\lambda_{l+1} ... d\lambda_n$$
$$= [n(n-1) ... (n-l+1)]^{-1} \det\{K_n(\lambda_j, \lambda_k)\}_{j,k=1}^l$$

where K_n is the reproducing kernel of $\{p_i^{(n)}\}_{i=0}^{\infty}$

- In particular $\operatorname{Var} \{ \mathcal{N}_n[\varphi] \} = \frac{1}{2} \int \int (\varphi(\lambda_1) \varphi(\lambda_2))^2 \mathcal{K}_n^2(\lambda_1, \lambda_2) d\lambda_1$
- Asymptotics of $p_n^{(n)}$ and $p_{n-1}^{(n)}$ Deift et al 97 99