Limit Theorems for Spectral Statistics of Random

Matrices

L. Pastur

Institute for Low Temperatures,
Kharkiv, Ukraine

Vienna, 77 February 2011

Pastur (MD ILT) Limit Theorems Vienna, ?? February 2011 1/



@ Introduction
e CLT IS VALID

Gaussian Matrices: LLN, CLT

Wigner Matrices: LLN, CLT

Sample Covariance Matrices: LLN, CLT
Borel Type Theorem for Gaussian Matrices

o CLT IS NOT VALID

e Hermitian Matrix Models
e Matrix Elements of Functions of Wigner Matrices

Pastur (MD ILT) Limit Theorems Vienna, ?? February 2011 2 /38



Introduction

Limit Theorems of Probability Theory (a reminder)

Let {G,;}/_; bei.i.d. r.v's with the probability law F and ¢ : R — R and

Nolg] = lz";qo@,)

be the linear statistic of {¢,}]_;, corresponding to the test function ¢.
o Law of Large Numbers (LLN): if E{|@(¢;)|} < oo, then with
probability 1

lim 0\, [g] = /(;)(A)F(d/\).

n—oo
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Introduction

Limit Theorems of Probability Theory (a reminder)

Let {G,;}/_; bei.i.d. r.v's with the probability law F and ¢ : R — R and

Nolg] = lz";qo@,)

be the linear statistic of {¢,}]_;, corresponding to the test function ¢.

o Law of Large Numbers (LLN): if E{|@(¢;)|} < oo, then with
probability 1

n—oo

o Central Limit Theorem (CLT): if E{¢?(¢;)} < oo then
n~2(N,[@] — E{N,[@]}) converges in distribution to the Gaussian

r.v. with mean zero and variance

v? = lim n~'Var{N,[g]} = Var{g(,)}, Var{n} = E{n*} —E*{y},
Note that for i.i.d. r.v.'s Var{N,[¢]} = O(n), n — oo

lim 0\, [g] = /(;)(A)F(d/\).
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Random Matrices
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matrices (random matrix), i.e., the matrix triangular array scheme;
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Introduction

Random Matrices

@ We have:
o A sequence {Mp}, of n x n real symmetric or hermitian random
matrices (random matrix), i.e., the matrix triangular array scheme;
o eigenvalues {)\5")}7:1 and eigenvectors {1,05")}7:1 of M,
o spectral statistics S, : {{/\E")}le, {1,[15”)}7:1}} — IR, in particular
o linear eigenvalue statistics for a given test function ¢ : R — R

Nalgl:= L0 (1) = Tro(My

e We are interested in the limiting laws of S,, and N, as n — oo.

(possibly after a certain additive and/or multiplicative normalization
(recall LLN and CLT for i.i.d. r.v.'s).
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Gaussian Matrices

Description

Set M, = n~ 1 2W,, W, = {Wy}?,_,
Po(dW) = Z;1e ™W /27" TT aw; [ dReWydIm Wj.
1<j<n 1<j<k<n

Since

TWi= ¥ wit2 YW
1<j<n 1<j<k<n

the above implies that { Wiy }1<j<k<, are independent Gaussian random
variables such that

E{Wj} = E{W;} =0, E{|Wi[*} = w?(1+54)/2.

Gaussian Unitary Ensemble (GUE)
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Take the GOE for n = 2, i.e,,
Zy te M /297 M dMiy d Re Mipd Tm My,
and find the joint distribution of (A1, A2):
Q; Te WA/ A A, PdArdAs,

since

(Mi1 + Map) F /(M1 — Map)2 + | My
5 )
Eigenvalues are strongly dependent even if the matrix elements are not!

Mo =
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Gaussian Matrices

Law of Large Numbers (LLN)

Let M, be the GUE matrix and N, (@] be a linear eigenvalue statistics of
its eigenvalues. Then we have for any bounded and continuous ¢ : R — C
with probability 1:

i $o0 (47) = ot
where the measure

Nsc(d/\) = psc(A)dA' psc( ) 27TW \/ 4-W2 1|/\|<2w

is known as the Wigner or the semicircle law.

Wigner 52 and many others.
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Gaussian Matrices

"Deformed" Case

Take the Gaussian matrix with non-zero mean: H, = Hy , + M,, assume
that the Normalizing Counting Measure (NCM) N , of eigenvalues of Hp ,
(which can be random but independent of M,) converges weakly to Np.
Then the NCM N, of H, converges weakly with probability 1 to a
non-random limit N (hence any linear eigenvalue statistics with bounded
and continuous test function does) and if

f(z) = ’X(i), Sz £0;

is its Stieltjes transform and fy is that for No, then f(z) = fy(z + w?f(2))
and the equation is uniquely solvable in the class of functions analytic in
C\ R and such that Imf(z) Imz > 0, Im z # 0 (Nevanlinna class N')
and f(z) = —z7 1+ o(z71), z — co.

This is known as the deformed semicircle law P. 72.
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Gaussian Matrices

Central Limit Theorem (CLT)

Let M, be the GUE matrix, ¢ : R — R be a differentiable function with a
polynomially bounded derivative. Then N,[¢] — E{N,[¢]} !!! converges
in distribution to the Gaussian random variable with zero mean and the

variance
_ —¢(M2)
Vooelp] = a2 / / ( — Az )

4W - Al)\2

g \/4W2 —)\f\/4w2 —)\%

Khorunzhy, Khoruzhenko, P. 96; Johansson 98; Guionnet et al 2000’s and
others

dA1dA;.

Var{\,[¢]} = O(1), n — 00 A PUZZLE 7!
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Gaussian Matrices

Variance and the CLT: "Explanations"

LLN — )\5") = 0(1), n — co, moreover, asymptotically are in
[—2w, 2w] with p.1, i.e.,

n

Nalo] — E{N,[¢ Z

thus the CLT could result from the strong cancelations of terms.
Examples: recall that M, = n~12W, and consider:

(i) p(A) = A, where Y7, A} =TeM = n 2217, W
is Gaussian by def|n|t|on;
(i) @(A) = A%, where Y71 (M")2 = TrM?2 = 0L Y20,y | W2

is asymptotically Gaussian by standard CLT.
The "same" for sufficiently regular ¢.
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Law of Addition of Random Matrices

Description

Take hermitian matrices A, and B, having limiting NCM's N4 and Np
and the Haar distributed unitary matrix U, and write

H, = A, + U,B,U* (1)

Analogous real symmetric matrices with the orthogonal Haar distributed
matrix instead of the unitary.

The model is known since long time but became popular after Voiculescu
works of the 80s-90s and free probability.
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Let {B,}/_; and {b;}]_; be the eigenvalues and eigenvectors of B,. Then
Hy = An + Z,B/Pq/'
=1

where {Pg, }_; are the orthogonal projections on the random vectors
{qi}_, uniformly distributed over the the unit sphere in C”, modulo their
pairwise orthogonality. Removing this restriction, we obtain the i.i.d.
random vectors uniformly distributed over the the unit sphere in C". This
case was considered by Marchenko, P. 67.

The cases of the deformed GUE and the deformed Laguerre Ensemble

M, = X« X, X = {Xjk}],_; are also the particular cases of (1) with
certain random B,,.
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Law of Addition

LLN

It can be proved then that the NCM of H,converges weakly with
probability 1 to a non-random limit Nwhose Stiletjes transform solves the
system

fatay(2) = fan (ha,(2)),
fara,(z) = far (hay (2)),
faia,(2) = z—ha(2) = ha,(2),

where f4 and fg the Stieltjes transforms of Ns and Ng and hy,,(2)
analytic in C\R, ha,,(z) = z+40(z), z — oo.

Voiculescu 80s; Speicher 90s; P., Vasilchuk 00, 07 with a long and then a
short and transparent one, based on a version of the Poincaré inequality
for classical groups.
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Law of Addition
CLT for linear eigenvalue statistics

Consider H, = A, + U,B,U; and assume
supmax{/|A|4NH,A(C/A),/|A|4/vn,5(cm)} < co.

Then %n(z) =,(z) —E{v,(2)}, where v,(z) = Tr (H — z) tand
z € C\R, converges in distribution to the complex Gaussian random
variable (z) with zero means and the covariances

Var{Ry(z)} = 27'R(S(z,2) +S(z,2)),
Var{3v9(z)} = —27R(S(z.z2) - S(z,2)).
Cov{R1(2).31(2)} = 2713(S(z.2) - 5(2.2)).

in which
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_ (ha(z1) = ha(22))(hs(21) — he(22))
San) = s T ) (F ) - ()
is limit the of Cov{7y,(z1),7,(z2)} as n — oo, and ha g and f are as
above.

Since

n

z) = (")—z -
m(@) = 3 (4~ 2)

and its variance is O(1) but not O(n), we have the same phenomenon of
strong cancellation as for the Gaussian Ensembles.
Related results by Speicher et al.
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Wigner Ensembles

Description

Mn g n_1/2 Wn' Wn g {VVJk}jn,kZ].
with Wy, = Wj; € R, 1 < j < k < nindependent and

E{Wy} =0 E{Wi}= (146w’
i.e. the two first moments of the entries coincide with those of the GOE or

P(dW,) = [T F(dWp),

1<j<k<n
where Fj has above moments. The GOE corresponds to

1

—W?2 2
Fix(dW) = (2r02)172° 2TdW, 05 = (140w,
J

J

Pastur (MD ILT)
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Wigner Ensembles

LLN and CLT

(i) Law of Large Numbers

Let M, = n=Y/2W, be the Wigner matrix and N, be the Normalized
Counting Measure of its eigenvalues. We have

(i) if sup; , E{|W;x|*™} < oo for some 5 > 0, then the semicrcle law is
valid with probability 1:

P 72, Girko 75
The LLN is the same as for Gaussian matrices (macroscopic universality) P
72, Girko 75;
(i) if

we = s_ukp E{(WS} < o,

Ji

and (1+ [t°)|9(t)] € L1(R, then N, [¢] — E{N,[¢]} obeys (1?) the
CLT with the variance

1, 2w A 27 5,2 2
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Borel Type Theorems

"Genuine" Borel Theorem

Theorem

Let U, be a n X n unitary random matrix, whose probability law is the
normalized Haar measure on U(n), and A, be a n X n matrix such that

lim n!TrA*A, = 1.

n—oo

Then TrU, A, converges in distribution to the standard complex Gaussian
variable: v = v; + ivy, E{71} = E{71} =0, E{r{} = E{13} = 1/2.

E. Borel 1905 (A, = {5j15k1}f,k:1v TrU,A, = 0O11), Diaconis et al 2003;
Collins, Stolz 2006; P. 2007.

Pastur (MD ILT) Limit Theorems Vienna, ?? February 2011 18 / 38



Borel Type Theorems

Heuristics

Not linear eigenvalue statistics
n
Trp(M Z 95(Mn) = ) 9(A}")
but a (simple) spectral statistic

9, (Ma) = Y (M) [y 2.

Since

Yy =1

I=1

|1p§")|2 =~ 1/n, it is reasonable to believe that ¢, (M,) is to be
asymptotically "analogous" to 1/nx linear eigenvalue statistics.

Pastur (MD ILT) Limit Theorems Vienna, ?? February 2011
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Borel Type Theorems

Gaussian Matrices

Let M, be the GOE matrix and ¢ : R — R is continuous. We have for
any j, — 00 asn — o

o E{p;, (My)}) = E{n'Trp(M,)} and with p. I
flny ¢;(M / ¢(A)Nsci (dA);
o lim,.« nVar{g, . (M,)} = Vé‘gE[(p], where

GOE 2//|(P Al (/\2)|2Nsc/(d/\1)Nsc/(d)\2);

° ”1/2((Pj,,jn(M”) — E{p;(M,)}) obey the CLT with variance V((;‘QE[q)] J

Lytova, P. 09 LLN as for the traces, the variance is. O(n~!)-and-the CLT,

Pastur (MD ILT)
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Borel Type Theorems

Law of Addition

One distinguish now the cases

H, = A, + U:BU,, (2)
and

H=V A, V,+ U,B,U,. (3)
which have the same results for the eigenvalue statistics (by the shift

invariance of the Haar measure and unitary invariance of eigenvalues).

Assume that sup,, ||An||, ||Bn|| < oo and denote G,(z) the resolvent one
of above random matrices.

Then we have in both cases the same LLN, i.e., the convergence with

probability 1 of (G,(z))k« to the same limit as ™ TrG,(z), i.e., for the
solution of the above system.

However, this is not the case for the fluctuations. Here we have

Cov{(Gn(z1))kk, (Gn(22) )k} = %Tn<21. )+ r(z1, ), z12 € C\R

where in the case of (2
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and in the case of (3)

of

To(z1,22) = 5 — f(z1)f(2) (4)

in which
0z = 21—z, 6f =f(z1) — f(z),
5/73 == hB(Zl) - hB(ZQ), GA(Z) == (A—ZI)_1
and the remainder r,(z1, z;) admits the bound

(21, 2)| < C/n%/2,

where C is independent of n and is finite if min{|Sz|, |Sz]|} > 0.
Moreover, the CLT with this variance is valid for sufficiently wide class of
test functions.

Thus the situation is similar to that in the probability theory.
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Matrix Elements of Functions of Wigner Matrices
LLN and Variance

Theorem

Let M, = n12W,, W, = {Wj }7 =1 be real symmetric Wigner matrix
such that the 3rd and 4th moments of W), do not depend on j, k.
Consider ¢;(M,). where (1 + [t])3®(t) € L1(R). Then we have for any

jn— 00 asn— oo

e with probability 1
Vi¥lgl: = lim nVar{g, (M)}

= VSO [g] + X4 ([ (1) (w — 2)osc (1))

where p._ is the density of the semicircle law.

2

Thus, the variance of ¢, . (M) is O(1/n) as for the GOE (although has
an additional term). Is the CLT the case?

Pastur (MD ILT)
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Matrix Elements of Functions of Wigner Matrices
Limiting Law

Theorem

Consider My, = n™Y/2Wy,, Wy = {Wj}7 _y, Wik = (1+8j) 2 Vi,
where Vjy, 1 < j < k < n are i.i.d. Assume that the logarithm of the
characteristic function E{e*V11} is entire. Then Vng: . (M) converges in
distribution as n — oo to the random variable ¢, such that

E{e"} = exp { — (V' + w2(x")?) /2 } E{e™ ¥}

where
. X 2w

X" = P(u)pps (1) dp.

w2 —2w

Lytova, P. 10. "Almost" individual

Analogous result for infinitely divisible {Vjx}'s and ¢ € C? Lytova 10.
Eigenvectors are not too similar to those of GOE
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Matrix Elements of Functions of Wigner Matrices

Examples

(i) (1) = A

1/2 v J Gaussian, GOE,
ey (Ma) = W = { any, Wigner # GOE.

(i) @(A) = A%:
n1/2g0jj(M,,) =n 12y Wi,
k=1

is asymptotically Gaussian by standard CLT.
The "same" for sufficiently regular ¢'s, since the "renormalized" argument

x* of E{e*11} is

o — proportional x ¢ is odd,
o 0, @ Is even.
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Hermitian Matrix Models

Description

Z Y exp{~TrV(M,)}dM,

dM, =TTdM; T dRMudSMy,
j=1 1<j<k<n

V : R — IR} is a continuous function (potential), and
de>0,L<oo V(A)>(2+¢)log(l+|A|]) >0, [A|>L
V = A?/2 corresponds to the Gaussian Unitary Ensemble (GUE). In fact,

(Wigner Matrices) (") (Matrix Models) = (Gaussian Matrices)

Strongly dependent entries, e.g. for V = A*
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Hermitian Matrix Models

Law of Large Numbers

For any non-negative measure m of unit mass on R define (Gauss)

Elm = [ V(Aym(dr) ~ [ [log|r ~ plm(dn)m(dn),

and let N be a unique minimizer of £ : infy, E[m] = E(N). Then for
V' € Lipjoc1 with probability 1 in weak sense

lim n A, = N, N(dA) = p(A)dA

n—oo

Wigner 52; Brezin et al 79; A. Boutet de Monvel, P., Shcherbina 95; Deift
et al 98; Johansson, 98

If V is convex, then supp/N = [a, b] and if V is real analytic, then

suppN = U;]:l[a/, bi], 1< q < oo.
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Hermitian Matrix Models

Variance of Linear Eigenvalue Statistics

@ O(1) bound for Lip; test functions P., Shcherbina 97
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Hermitian Matrix Models

Variance of Linear Eigenvalue Statistics

@ O(1) bound for Lip; test functions P., Shcherbina 97

@ Asymptotic form

Var{N,[¢]} ~ V(nB),
VT SRy, B,=N([a,)), I=2,..q

Note that V is the quadratic functional of ¢.

For g > 2, Var{N,[¢]} is asymptotically quasiperiodic in n, thus no
limit as n — oo; its sublimits are indexed by x € H9~1 € T9~!,
hence the family of CLT's, indexed by x € IH9~! (generalized CLT).
P. 06
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Hermitian Matrix Models

Limiting law

Z,[g] := Ey {efNﬁ’W]} el
with .
Dlg] = /0 (1— s)V(x + sa[g])ds

“l[(P] = 5éfi\)

Z, has no limit as n — oo in general. The logarithms of its sublimits
(indexed by H971) are not in general quadratic in ¢ (coinciding
asymptotically with " lim" ,,_mVarV{J\/'n[qo]}/Z), hence no (generalized)
CLT in general. P. 06

The "explanation" used for the Wigner matrices does not apply since the
entries of M, are strongly dependent now.

p(A)dA, I=1,...,9—1.
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Hermitian Matrix Models

Example
9=tA teR, ie, Ny =t(A” + .. +A(),

AN
VA =5 — =
W=7~
hence B; = 1/2 and Var{N,[¢]} ~ t2(b* + a*> —2(—1)"ab) /4
2-periodic.
However ay = a[A]],_, = a/K(a/b), where K is the complete elliptic
integral of first kind and, is generically irrational and

do t2

, ¢> V2, supp N = [—b, —a] U a, b]

d = — + A(x +art) — A(x) — a1 tA'(x), {x =n/2}
2 2
d = ° jb £ 1im" o eoVar{ Ny},
Alx) = ) dnm (27Tiy m) 2 270mx
meZ\{0}

@ is quasiperiodic (and not quadratic!) in t.
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Matrix Elements of Functions of Wigner Matrices
LLN and Variance

Theorem

Let M, = n12W,, W, = {Wj }7 =1 be real symmetric Wigner matrix
such that the 3rd and 4th moments of W), do not depend on j, k.
Consider ¢;(M,). where (1 + [t])3®(t) € L1(R). Then we have for any

jn— 00 asn— oo

e with probability 1
Vi¥lgl: = lim nVar{g, (M)}

= VSO [g] + X4 ([ (1) (w — 2)osc (1))

where p._ is the density of the semicircle law.

2

Thus, the variance of ¢, . (M) is O(1/n) as for the GOE (although has
an additional term). Is the CLT the case?
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Matrix Elements of Functions of Wigner Matrices
Limiting Law

Theorem

Consider My, = n™Y/2Wy,, Wy = {Wj}7 _y, Wik = (1+8j) 2 Vi,
where Vjy, 1 < j < k < n are i.i.d. Assume that the logarithm of the
characteristic function E{e*V11} is entire. Then Vng: . (M) converges in
distribution as n — oo to the random variable ¢, such that

E{e"} = exp { — (V' + w2(x")?) /2 } E{e™ ¥}

where
. X 2w

X" = P(u)pps (1) dp.

w2 —2w

Lytova, P. 10. "Almost" individual

Analogous result for infinitely divisible {Vjx}'s and ¢ € C? Lytova 10.
Eigenvectors are not too similar to those of GOE
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Tools:

e Gaussian differentiation formula (integration by parts):

E{C, ()} = E{GE{D/(Q)}, /=1, ...p;
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Tools:

e Gaussian differentiation formula (integration by parts):

E{C, ()} = E{GE{D/(Q)}, /=1, ...p;

e Poincaré(Nash-Chernoff) inequality:
p
Var{®} < ) E{Z}E{|®]*},
I=1

valid for a collection {&,}}_; of independent Gaussian random
variables.
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Bound for the Variance of Linear Eigenvalue Statistics

Observe that for the GOE {Mjx }1<j<k<y are independent Gaussian,
Var{Mjk} = W2(1 + (5J-k)/n

and

oM
Then the Poincaré yields:

oTro(M w?
PM) — 04 0509l (M),

Var{Trp(M)} < 2w’E{n 'Tre/(M)(¢'(M))*}
< 2W2igﬂg|(p/(M)|2!”
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Semicircle Law

Consider the Stieltjes transform of N,

gn(z) = W Sz 40,

By spectral theorem g,(z) = n"'TrG(z), by resolvent identity

f"(z) = E{gn(Z)} - - Z E _/ka_/ }
J k=1
by dif. formula f,(z) = z7! + z7'E{g2(z)} + O(1/n), and by the bound
for the variance
f(z) =z 4+ w2z 1f%(2)
for lim,_ f, = f uniformly on compacts of C\IR. Then Im f(z)Imz > 0

and inversion formula give semicircle law for lim, . E{N,}.
Bose, Chatterjee 04; P. 05
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Wigner Matrices

e Martingale bounds E{|NS(A)|*} = O(n™?) instead of Poincaré Girko
70s
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Wigner Matrices

e Martingale bounds E{|NS(A)|*} = O(n™?) instead of Poincaré Girko
70s

o General differentiation formula Khorunzhy et al 95:
If E{|Z|PT2} < o0, p€E N, ®: R — C of CP™! with bounded
derivatives, then

E{¢®(0)} = mE{®(¢ }+2"’“E{q> (@)} + e,
lepl < CpE{|C|”+2}§gﬂglq>"“ (1)),

where {x,}7°, are the cumulants of Wi,. Note that the / =1 term is
"Gaussian".
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Wigner Matrices

e Martingale bounds E{|NS(A)|*} = O(n™?) instead of Poincaré Girko
70s

o General differentiation formula Khorunzhy et al 95:
If E{|Z|PT2} < o0, p€E N, ®: R — C of CP™! with bounded
derivatives, then

E{¢®(0)} = mE{®(¢ }+Z"’“E{q> (@)} + &,
lepl < CpE{|C|p+2}§l€Jﬂg|¢"“ (1)),

where {x,}7°, are the cumulants of Wi,. Note that the / =1 term is
"Gaussian".

@ "Interpolation trick" P. 00: use the product space of the Wigner M,
and the GOE I\7ln with the same first and second moments and set

M,(s) = s*/2M, 4+ (1 — s)'/?M,, 0<s<1,
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Matrix Models

@ Determinantal formulas for marginals of joint probability density:

oAy o Ay) = /]RH Pt (As oo Ap At An)dA i1 A,
=[n(n—1)...(n—1+1)]? det{ K, (A;, )‘k)}J/',kzl

where Kj, is the reproducing kernel of {p}n) 20
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Matrix Models

@ Determinantal formulas for marginals of joint probability density:

oAy o Ay) = /]RH Pt (As oo Ap At An)dA i1 A,
=[n(n—1)...(n—1+1)]? det{ K, (A;, )‘k)}J/',kzl

where K, is the reproducing kernel of {p J 0

o In particularVar{N,[¢|} = 3 [ [(¢ P(12))?K2(A1, A2)dAq

@ Asymptotics of pf, " and p,(,_)1 Deift et al 97 - 99
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