

Technische Universität Graz
Institut für Mathematische
Strukturtheorie

Asymptotic Behavior of Random Walks on Free Products of Groups

Vienna - March, 28th 2011

Elisabetta Candellero (joint work with Lorenz A. Gilch)

Environment

Introduction of the structure we work on: the Free Product Γ .

Environment

Introduction of the structure we work on: the Free Product Γ .

Process

We consider a Nearest Neighbor Random Walk on Γ.

Environment

Introduction of the structure we work on: the Free Product Γ .

Process

We consider a Nearest Neighbor Random Walk on Γ .

Aim

Find the asymptotic behavior of the Return Probabilities of the RW.

Environment

Introduction of the structure we work on: the Free Product Γ .

Process

We consider a Nearest Neighbor Random Walk on Γ .

Aim

Find the asymptotic behavior of the Return Probabilities of the RW.

Method

We find the Expansion of the Green Function to use Darboux's method.

Figure: Example: $\mathbb{Z}_6 * \mathbb{Z}_3$

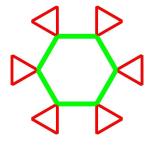


Figure: Example: $\mathbb{Z}_6 * \mathbb{Z}_3$

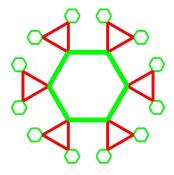


Figure: Example: $\mathbb{Z}_6 * \mathbb{Z}_3$

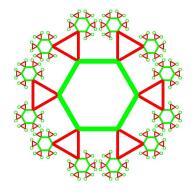


Figure: Example: $\mathbb{Z}_6 * \mathbb{Z}_3$

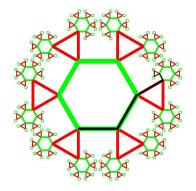
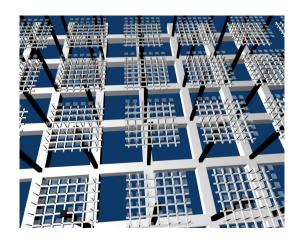


Figure: Example: $x_1x_2x_3x_4x_5$ is an element of $\mathbb{Z}_6 * \mathbb{Z}_3$

Example of Free Product of a Finite and an Infinite Group



Example of Free Product of a Finite and an Infinite Group

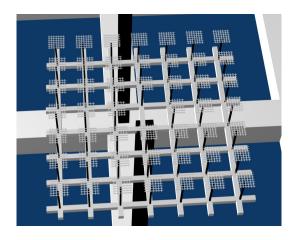


Figure: Example: Video where we see the construction of $\mathbb{Z}^2 * \mathbb{Z}_2$

Formal Overview: define a RW

 $\Gamma:=$ group with identity e. A:= set of generators of $\Gamma;$ $|A|<\infty.$ $\mu:=$ probability measure on $\Gamma:$ defines a RW with transition probabilities

$$\forall x, y \in \Gamma \qquad p(x, y) = \mu(x^{-1}y); \qquad (p(x, y) > 0 \text{ iff } x^{-1}y \in A).$$

 $\mu^{(n)}(x^{-1}y) := p^{(n)}(x,y) = \text{probability to go from } x \text{ to } y \text{ in } n \text{ steps.}$ Analytically: n-th convolution of p(x,y).

Formal Overview: define a RW

 $\Gamma:=$ group with identity e. A:= set of generators of $\Gamma;$ $|A|<\infty.$ $\mu:=$ probability measure on $\Gamma:$ defines a RW with transition probabilities

$$\forall x, y \in \Gamma \qquad p(x, y) = \mu(x^{-1}y); \qquad (p(x, y) > 0 \text{ iff } x^{-1}y \in A).$$

 $\mu^{(n)}(x^{-1}y) := p^{(n)}(x,y) = \text{probability to go from } x \text{ to } y \text{ in } n \text{ steps.}$ Analytically: n-th convolution of p(x,y).

Asymptotic Behavior of the Return Probabilities $\mu^{(n)}(e)$

Formal Overview: define a RW

 $\Gamma:=$ group with identity e. A:= set of generators of $\Gamma;$ $|A|<\infty.$ $\mu:=$ probability measure on $\Gamma:$ defines a RW with transition probabilities

$$\forall x,y \in \Gamma \qquad p(x,y) = \mu(x^{-1}y); \qquad (p(x,y) > 0 \text{ iff } x^{-1}y \in A).$$

 $\mu^{(n)}(x^{-1}y) := p^{(n)}(x,y) = \text{probability to go from } x \text{ to } y \text{ in } n \text{ steps.}$ Analytically: n-th convolution of p(x,y).

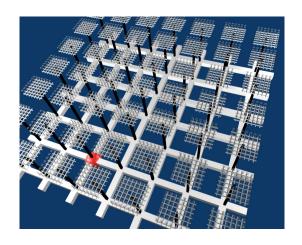
Asymptotic Behavior of the Return Probabilities $\mu^{(n)}(e)$

In a great variety of cases:

$$\mu^{(n)}(e) \sim C \cdot \mathbf{r}^{-n} \mathbf{n}^{-\lambda},$$

where $1/\mathbf{r} \le 1$ is the "spectral radius" and $\lambda > 0$ a parameter depending on the structure of Γ and on the RW.

Idea of a Random Walk on $\mathbb{Z}^2*\mathbb{Z}_2$



Idea of a Random Walk on $\mathbb{Z}^2 * \mathbb{Z}_2$

Figure: Example: Video where we see an example of a RW on $\mathbb{Z}^2 * \mathbb{Z}_2$

Background and Motivation

Gerl's conjecture

Gerl [Ger81]: the *n*-step return probabilities of two symmetric measures on a group have the same $n^{-\lambda}$. I.e. λ is a group invariant.

Background and Motivation

Gerl's conjecture

Gerl [Ger81]: the *n*-step return probabilities of two symmetric measures on a group have the same $n^{-\lambda}$. I.e. λ is a group invariant.

Cartwright's astonishing result

Cartwright [Car89]: found a *counterexample*. There exist at least two probability measures (with same support) on $\mathbb{Z}^d * \mathbb{Z}^d$ with $d \geq 5$ with different asymptotic behaviors: $n^{-3/2}$ and $n^{-d/2}$.

Background and Motivation

Gerl's conjecture

Gerl [Ger81]: the *n*-step return probabilities of two symmetric measures on a group have the same $n^{-\lambda}$. I.e. λ is a group invariant.

Cartwright's astonishing result

Cartwright [Car89]: found a *counterexample*. There exist at least two probability measures (with same support) on $\mathbb{Z}^d * \mathbb{Z}^d$ with $d \ge 5$ with different asymptotic behaviors: $n^{-3/2}$ and $n^{-d/2}$.

Questions

- What are the motivations of Cartwright's examples? What are the possible asymptotic behaviors on $\mathbb{Z}^{d_1} * \mathbb{Z}^{d_2}$ $(d_1 \neq d_2)$?
- What happens on $\Gamma_1 * \Gamma_2$ (Γ_1 and Γ_2 finitely generated groups)?

Definitions

Starting Objects

- $\Gamma_1, \dots, \Gamma_m$: finitely generated groups with identities $\{e_i\}_{i=1}^m$;
- μ_1, \ldots, μ_m : probability measures s.t. $\langle \text{supp}(\mu_i) \rangle = \Gamma_i$.

Definitions

Starting Objects

- $\Gamma_1, \dots, \Gamma_m$: finitely generated groups with identities $\{e_i\}_{i=1}^m$;
- μ_1, \ldots, μ_m : probability measures s.t. $\langle \text{supp}(\mu_i) \rangle = \Gamma_i$.

Structure and Properties

• Free Product $\Gamma := \Gamma_1 * \ldots * \Gamma_m$: the set of all finite words of the form $x_1 x_2 \ldots x_n$, where x_1, \ldots, x_n are elements of $\bigcup_i \Gamma_i \setminus \{e_i\}$ and x_j, x_{j+1} do not belong to the same group.

Definitions

Starting Objects

- $\Gamma_1, \ldots, \Gamma_m$: finitely generated groups with identities $\{e_i\}_{i=1}^m$;
- μ_1, \ldots, μ_m : probability measures s.t. $\langle \text{supp}(\mu_i) \rangle = \Gamma_i$.

Structure and Properties

- Free Product $\Gamma := \Gamma_1 * \ldots * \Gamma_m$: the set of all finite words of the form $x_1x_2 \ldots x_n$, where x_1, \ldots, x_n are elements of $\bigcup_i \Gamma_i \setminus \{e_i\}$ and x_j, x_{j+1} do not belong to the same group.
- Define the probability measure on Γ

$$\mu := \alpha_1 \mu_1 + \alpha_2 \mu_2 + \ldots + \alpha_m \mu_m,$$

s.t. $\sum_{i=1}^{m} \alpha_i = 1$ and $\alpha_i > 0$ for every index $i \in \{1, \dots m\}$. We consider a RW on Γ governed by μ .

Green Functions

Green Functions

- $G_i(z) := \sum_{n=0}^{\infty} \mu_i^{(n)}(e_i) z^n$ on the free factors Γ_i for $i = 1, \dots, m$;
- analogously on Γ we have $G(z) := \sum_{n=0}^{\infty} \mu^{(n)}(e)z^n$.

The radii of convergence will be denoted by \mathbf{r}_i and \mathbf{r} respectively. What we look for, is the asymptotic behavior of the $\mu^{(n)}(e)$.

Green Functions

Green Functions

- $G_i(z) := \sum_{n=0}^{\infty} \mu_i^{(n)}(e_i) z^n$ on the free factors Γ_i for $i = 1, \dots, m$;
- analogously on Γ we have $G(z) := \sum_{n=0}^{\infty} \mu^{(n)}(e)z^n$.

The radii of convergence will be denoted by \mathbf{r}_i and \mathbf{r} respectively. What we look for, is the asymptotic behavior of the $\mu^{(n)}(e)$.

Idea

We find the singular expansion of G(z) near $z = \mathbf{r}$ and then apply the Darboux's Method.

Remark: It is possible to use another method known as "Singularity Analysis" (see [FO90] and [FS09]), but there is no advantage here.

Let us compute the singular term of the Green function for each factor \mathbb{Z}^d , d > 1:

$$S_d(z) \sim \begin{cases} (\mathbf{r}_d - z)^{(d-2)/2}, & \text{if } d \text{ is odd,} \\ (\mathbf{r}_d - z)^{(d-2)/2} \log(\mathbf{r}_d - z), & \text{if } d \text{ is even,} \end{cases}$$

Let us compute the singular term of the Green function for each factor \mathbb{Z}^d , d > 1:

$$S_d(z) \sim egin{cases} ({f r}_d - z)^{(d-2)/2}, & ext{if d is odd,} \ ({f r}_d - z)^{(d-2)/2} \log({f r}_d - z), & ext{if d is even,} \end{cases}$$

There are three possible cases:

1st possibility: first singular term of G(z) (defined on $\mathbb{Z}^{d_1} * \mathbb{Z}^{d_2}$) is proportional to

$$\sqrt{\mathbf{r}-z}$$
. (1st)

Let us compute the singular term of the Green function for each factor \mathbb{Z}^d , d > 1:

$$S_d(z) \sim \begin{cases} (\mathbf{r}_d - z)^{(d-2)/2}, & \text{if } d \text{ is odd,} \\ (\mathbf{r}_d - z)^{(d-2)/2} \log(\mathbf{r}_d - z), & \text{if } d \text{ is even,} \end{cases}$$

There are three possible cases:

1st possibility: first singular term of G(z) (defined on $\mathbb{Z}^{d_1} * \mathbb{Z}^{d_2}$) is proportional to

$$\sqrt{\mathbf{r}-\mathbf{z}}$$
. (1st)

In this case:

$$\mu^{(2n)}(e) \sim C \cdot \mathbf{r}^{-2n} \cdot \mathbf{n}^{-3/2}$$
.

2nd possibility: first singular term of G(z) is proportional to

$$(\mathbf{r}-z)^{(d_1-2)/2}\log^{\kappa}(\mathbf{r}-z)$$
 [leading singularity on \mathbb{Z}^{d_1}]. (2nd)

$$(\kappa = 0 \text{ for } d_1 \text{ odd, or } \kappa = 1 \text{ for } d_1 \text{ even.})$$

2nd possibility: first singular term of G(z) is proportional to

$$(\mathbf{r}-z)^{(d_1-2)/2}\log^{\kappa}(\mathbf{r}-z)$$
 [leading singularity on \mathbb{Z}^{d_1}]. (2nd)

In this case:

$$\mu^{(2n)}(e) \sim C_1 \cdot \mathbf{r}^{-2n} \cdot \mathbf{n}^{-d_1/2}.$$

$$(\kappa = 0 \text{ for } d_1 \text{ odd, or } \kappa = 1 \text{ for } d_1 \text{ even.})$$

2nd possibility: first singular term of G(z) is proportional to

$$(\mathbf{r}-z)^{(d_1-2)/2}\log^{\kappa}(\mathbf{r}-z)$$
 [leading singularity on \mathbb{Z}^{d_1}]. (2nd)

In this case:

$$\mu^{(2n)}(e) \sim C_1 \cdot \mathbf{r}^{-2n} \cdot \mathbf{n}^{-d_1/2}.$$

3rd possibility: first singular term of G(z) is proportional to

$$(\mathbf{r}-z)^{(d_2-2)/2}\log^{\kappa}(\mathbf{r}-z)$$
 [leading singularity on \mathbb{Z}^{d_2}]. (3rd)

$$(\kappa = 0 \text{ for } d_1, d_2 \text{ odd, or } \kappa = 1 \text{ for } d_1, d_2 \text{ even.})$$

2nd possibility: first singular term of G(z) is proportional to

$$(\mathbf{r}-z)^{(d_1-2)/2}\log^{\kappa}(\mathbf{r}-z)$$
 [leading singularity on \mathbb{Z}^{d_1}]. (2nd)

In this case:

$$\mu^{(2n)}(e) \sim C_1 \cdot \mathbf{r}^{-2n} \cdot \mathbf{n}^{-d_1/2}.$$

<u>3rd possibility</u>: first singular term of G(z) is proportional to

$$(\mathbf{r}-z)^{(d_2-2)/2}\log^{\kappa}(\mathbf{r}-z)$$
 [leading singularity on \mathbb{Z}^{d_2}]. (3rd)

In this case:

$$\mu^{(2n)}(e) \sim C_2 \cdot \mathbf{r}^{-2n} \cdot \mathbf{n}^{-d_2/2}$$
.

($\kappa = 0$ for d_1 , d_2 odd, or $\kappa = 1$ for d_1 , d_2 even.)

The trick to understand what happens, is to consider a functional equation (concerning G(z)), seen as a function of the parameter α_1 .

Consider

$$\Psi(zG(z)) = \frac{1}{1 - U(z) + zU'(z)} ,$$

where U(z) := 1 - 1/G(z). (The dependence on α_1 is hidden!)

The trick to understand what happens, is to consider a functional equation (concerning G(z)), seen as a function of the parameter α_1 .

Consider

$$\Psi(zG(z)) = \frac{1}{1 - U(z) + zU'(z)},$$

where U(z) := 1 - 1/G(z). (The dependence on α_1 is hidden!)

There are 3 possibilities: at a (known, it comes from the computations) critical value $t = \bar{\theta}$, the function $\Psi(t)$ can be

1.
$$\Psi(\bar{\theta}) < 0$$
;

1.
$$\Psi(\bar{\theta}) < 0$$
; **2.** $\Psi(\bar{\theta}) > 0$; **3.** $\Psi(\bar{\theta}) = 0$.

3.
$$\Psi(\bar{\theta})=0$$

Case
$$\Psi(\bar{\theta}) < 0$$

This is already known (e.g. [CS86], [Car88], [Woe00]): $\mu^{(n)}(e) \sim C \cdot \mathbf{r}^{-n} n^{-3/2}$.

Case
$$\Psi(\bar{\theta}) < 0$$

This is already known (e.g. [CS86], [Car88], [Woe00]): $\mu^{(n)}(e) \sim C \cdot \mathbf{r}^{-n} n^{-3/2}$.

Case
$$\Psi(\bar{\theta}) > 0$$

Theorem: If $\Psi(\bar{\theta}) > 0$, there are two possible behaviors:

$$\mu^{(n)}(e) \sim \begin{cases} C_1 \cdot \mathbf{r}^{-n} n^{-d_1/2} & \text{if } \alpha_1 \geq \alpha_c \\ C_2 \cdot \mathbf{r}^{-n} n^{-d_2/2} & \text{if } \alpha_1 < \alpha_c. \end{cases}$$

Case
$$\Psi(\bar{\theta}) < 0$$

This is already known (e.g. [CS86], [Car88], [Woe00]): $\mu^{(n)}(e) \sim C \cdot \mathbf{r}^{-n} n^{-3/2}$.

Case
$$\Psi(\bar{\theta}) > 0$$

Theorem: If $\Psi(\bar{\theta}) > 0$, there are two possible behaviors:

$$\mu^{(n)}(e) \sim \begin{cases} C_1 \cdot \mathbf{r}^{-n} n^{-d_1/2} & \text{if } \alpha_1 \ge \alpha_c \\ C_2 \cdot \mathbf{r}^{-n} n^{-d_2/2} & \text{if } \alpha_1 < \alpha_c. \end{cases}$$

Case
$$\Psi(\bar{\theta}) = 0$$

Theorem: $\Psi(\bar{\theta}) = 0$ yields $\mu^{(n)}(e) \sim C \cdot \mathbf{r}^{-n} n^{-3/2}$.

The function $\Upsilon(\alpha_1) := \Psi(\bar{\theta})$, seen as a function of α_1 behaves approximately like a truncated parabola, in particular it can have 0,1 or 2 zeros, according to its characteristics.

The function $\Upsilon(\alpha_1) := \Psi(\bar{\theta})$, seen as a function of α_1 behaves approximately like a truncated parabola, in particular it can have 0,1 or 2 zeros, according to its characteristics.

• For its **positive** values, the asymptotic behavior obeys one of the $n^{-d_i/2}$ -laws (i = 1, 2): which one? It depends on α_1 .

The function $\Upsilon(\alpha_1) := \Psi(\bar{\theta})$, seen as a function of α_1 behaves approximately like a truncated parabola, in particular it can have 0,1 or 2 zeros, according to its characteristics.

- For its positive values, the asymptotic behavior obeys one of the $n^{-d_i/2}$ -laws (i=1,2): which one? It depends on α_1 .
- Otherwise, the asymptotic behavior obeys the $n^{-3/2}$ -law.

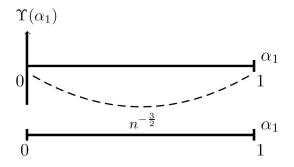


Figure: 1st Case: no phase transition.

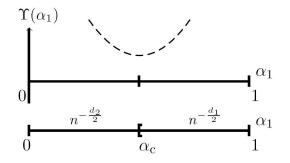


Figure: 2nd Case, e.g if μ_1 and μ_2 are Simple RWs.

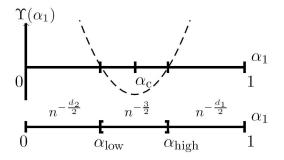
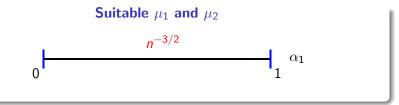
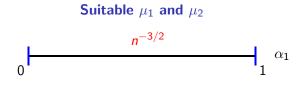
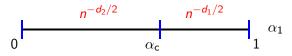


Figure: General Case (2 phase transitions).





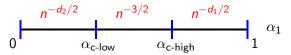
μ_1 and μ_2 Simple RWs



Here there is a value α_c which determines a *phase transition*.

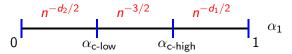
For some μ_1 and μ_2 it is possible to obtain all three behaviors, just depending on the value of the parameter α_1 .

Keep μ_1, μ_2 fixed, α_1 varies: all possible behaviors



For some μ_1 and μ_2 it is possible to obtain all three behaviors, just depending on the value of the parameter α_1 .

Keep μ_1, μ_2 fixed, α_1 varies: all possible behaviors



Possible Combinations

It is possible to have one or two sub-intervals collapsing, depending on the properties of the Functional Equation concerning G(z).

Asymptotics

What is the meaning of our result?

If $\Psi(\bar{\theta}) > 0$, the RW on Γ inherits its (non-exponential) behavior either from the RW defined on \mathbb{Z}^{d_1} or from the RW defined on \mathbb{Z}^{d_2} .

Otherwise we have the $n^{-3/2}$ -behavior.

More general Groups

On
$$\Gamma := \Gamma_1 * \Gamma_2$$

Assume the $G_i(z)$ have algebraic or logarithmic singular expansion. Then up to 3 different asymptotic behaviors are possible for $\mu^{(n)}(e)$:

$$C \cdot \mathbf{r}^{-n} n^{-3/2}$$
, $C_1 \cdot \mathbf{r}^{-n} n^{-\lambda_1} \log^{\kappa_1} n$, $C_2 \cdot \mathbf{r}^{-n} n^{-\lambda_2} \log^{\kappa_2} n$.

 $(\lambda_1, \lambda_2 > 0, \kappa_1, \kappa_2 \ge 0)$ are parameters related to the singular expansions of $G_1(z)$ and $G_2(z)$ respectively).

More general Groups

On
$$\Gamma := \Gamma_1 * \Gamma_2$$

Assume the $G_i(z)$ have algebraic or logarithmic singular expansion. Then up to 3 different asymptotic behaviors are possible for $\mu^{(n)}(e)$:

$$C \cdot \mathbf{r}^{-n} n^{-3/2}, \qquad C_1 \cdot \mathbf{r}^{-n} n^{-\lambda_1} \log^{\kappa_1} n, \qquad C_2 \cdot \mathbf{r}^{-n} n^{-\lambda_2} \log^{\kappa_2} n.$$

 $(\lambda_1, \lambda_2 > 0, \kappa_1, \kappa_2 \ge 0)$ are parameters related to the singular expansions of $G_1(z)$ and $G_2(z)$ respectively).

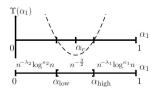


Figure: General Case

Résumé

Theorem: General Result (C. and Gilch)

Define $\Gamma := \Gamma_1 * \ldots * \Gamma_m$, by induction we find:

If the Green Function on the Free Factors have algebraic or logarithmic singularity, then the asymptotic behavior of $\mu^{(n)}(e)$ on Γ obeys one of the following laws:

$$\mu^{(n)}(e) \sim \begin{cases} C_i \mathbf{r}^{-n} n^{-\lambda_i} \log^{\kappa_i} n & \text{for one } i \in \{1, \dots, m\} \\ C_0 \mathbf{r}^{-n} n^{-3/2} \end{cases}$$

According to the positivity of the functional equation we can observe that the RW on Γ :

- either inherits its (non-exponential) behavior from the RW defined on one of the factors,
- or obeys the $n^{-3/2}$ -law.

• Definition of $\Psi(t) \Rightarrow \text{if } \Psi(\bar{\theta}) > 0 \text{ then } G'(\mathbf{r}) < \infty \Rightarrow \text{no square-root!}$

- Definition of $\Psi(t) \Rightarrow \text{if } \Psi(\bar{\theta}) > 0 \text{ then } G'(\mathbf{r}) < \infty \Rightarrow \text{no square-root!}$
- We introduce some auxiliary functions $\xi_i(z)$ (for all i = 1, ..., m) s.t.

$$\alpha_i z G(z) = \xi_i(z) G_i(\xi_i(z)).$$

- Definition of $\Psi(t) \Rightarrow \text{if } \Psi(\bar{\theta}) > 0 \text{ then } G'(\mathbf{r}) < \infty \Rightarrow \text{no square-root!}$
- We introduce some auxiliary functions $\xi_i(z)$ (for all i = 1, ..., m) s.t.

$$\alpha_i z G(z) = \xi_i(z) G_i(\xi_i(z)).$$

• We find the singular expansion for $\xi_i(z)$ near $z = \mathbf{r}$: it has the same form of the expansion of one of the $G_j(z')$ near $z' = \mathbf{r}_j$, namely the one with the biggest weight α_j .

- Definition of $\Psi(t) \Rightarrow \text{if } \Psi(\bar{\theta}) > 0 \text{ then } G'(\mathbf{r}) < \infty \Rightarrow \text{no square-root!}$
- We introduce some auxiliary functions $\xi_i(z)$ (for all i = 1, ..., m) s.t.

$$\alpha_i z G(z) = \xi_i(z) G_i(\xi_i(z)).$$

- We find the singular expansion for $\xi_i(z)$ near $z = \mathbf{r}$: it has the same form of the expansion of one of the $G_j(z')$ near $z' = \mathbf{r}_j$, namely the one with the biggest weight α_j .
- We find the singular expansion of G(z) near $z = \mathbf{r}$: it has the same form as $\xi_j(z)$.

- Definition of $\Psi(t) \Rightarrow \text{if } \Psi(\bar{\theta}) > 0 \text{ then } G'(\mathbf{r}) < \infty \Rightarrow \text{no square-root!}$
- We introduce some auxiliary functions $\xi_i(z)$ (for all i = 1, ..., m) s.t.

$$\alpha_i z G(z) = \xi_i(z) G_i(\xi_i(z)).$$

- We find the singular expansion for $\xi_i(z)$ near $z = \mathbf{r}$: it has the same form of the expansion of one of the $G_j(z')$ near $z' = \mathbf{r}_j$, namely the one with the biggest weight α_j .
- We find the singular expansion of G(z) near $z = \mathbf{r}$: it has the same form as $\xi_j(z)$.
- Once the expansion of G(z) is known, apply Darboux's method:

$$\mu^{(n)}(e) \sim \mathbf{r}^{-n} n^{-\lambda_j} \log^{\kappa_j}(n).$$

It is possible to prove that $\Psi(\bar{\theta})=0$ leads to some properties of the function G(z) such that

$$\lim_{z\to \mathbf{r}}\frac{(G(z)-G(\mathbf{r}))^2}{\mathbf{r}-z}<\infty, \quad \text{ or, equivalently, } \quad G(z)-G(\mathbf{r})\sim \sqrt{\mathbf{r}-z}.$$

Expanding a bit further, we can apply Darboux's method, obtainig

$$\mu^{(n)}(e) \sim \mathbf{r}^{-n} n^{-3/2}$$
.

▶ Skip Darboux

S(z) :=leading singular term of G(z) near $z = \mathbf{r}$:

$$G(z) = S(z) + R(z).$$

Known: asymptotic Taylor expansion of $S(z) = \sum_{n=0}^{\infty} a_n z^n$ near z = 0 (when S(z) has algebraic or logarithmic terms: $a_n \sim \mathbf{r}^{-n} n^{-k}$, for some suitable k > 0).

S(z) :=leading singular term of G(z) near $z = \mathbf{r}$:

$$G(z) = S(z) + R(z).$$

Known: asymptotic Taylor expansion of $S(z) = \sum_{n=0}^{\infty} a_n z^n$ near z = 0 (when S(z) has algebraic or logarithmic terms: $a_n \sim \mathbf{r}^{-n} n^{-k}$, for some suitable k > 0).

Let us consider the following condition:

$$G(z) - S(z) \in \mathscr{C}^{k} \text{ for all } |z| < \mathbf{r}.$$
 (*)

S(z) :=leading singular term of G(z) near $z = \mathbf{r}$:

$$G(z) = S(z) + R(z).$$

Known: asymptotic Taylor expansion of $S(z) = \sum_{n=0}^{\infty} a_n z^n$ near z = 0 (when S(z) has algebraic or logarithmic terms: $a_n \sim \mathbf{r}^{-n} n^{-k}$, for some suitable k > 0).

Let us consider the following condition:

$$G(z) - S(z) \in \mathscr{C}^k \text{ for all } |z| < \mathbf{r}.$$
 (*)

If (*) is satisfied, applying the **Riemann-Lebesgue Lemma** it follows that the coefficients of G(z) - S(z) are $\mathbf{o}(a_n)$, implying $\mu^{(n)}(e) \sim a_n$.

S(z) :=leading singular term of G(z) near $z = \mathbf{r}$:

$$G(z) = S(z) + R(z).$$

Known: asymptotic Taylor expansion of $S(z) = \sum_{n=0}^{\infty} a_n z^n$ near z = 0 (when S(z) has algebraic or logarithmic terms: $a_n \sim \mathbf{r}^{-n} n^{-k}$, for some suitable k > 0).

Let us consider the following condition:

$$G(z) - S(z) \in \mathscr{C}^{k} \text{ for all } |z| < \mathbf{r}.$$
 (*)

If (*) is satisfied, applying the **Riemann-Lebesgue Lemma** it follows that the coefficients of G(z) - S(z) are $\mathbf{o}(a_n)$, implying $\mu^{(n)}(e) \sim a_n$.

If (*) is not satisfied, we **have to** expand G(z) further (S(z)) will contain "enough" terms), until it holds.

Remarks

• The method of Singularity Analysis, developed by Flajolet and Sedgewick [FS09], seems to be of easier application, because we just need to know the *first* singular term instead of a more precise expansion. BUT the problems we had to face in order to find a further expansion, arised as well while trying to verify that the function G(z) had an analytic continuation outside its circle of convergence.

Remarks

- The method of Singularity Analysis, developed by Flajolet and Sedgewick [FS09], seems to be of easier application, because we just need to know the *first* singular term instead of a more precise expansion. BUT the problems we had to face in order to find a further expansion, arised as well while trying to verify that the function G(z) had an analytic continuation outside its circle of convergence.
- Given any $\Gamma = \Gamma_1 * \ldots * \Gamma_m$ (with at least one element of order ≥ 3), it is always possible (see e.g. [Woe00]) to find a set of measures μ_1, \ldots, μ_m s.t. $\mu^{(n)}(e) \sim C \cdot \mathbf{r}^{-n} n^{-3/2}$. This does not apply to the other behaviors.

Remarks

- The method of Singularity Analysis, developed by Flajolet and Sedgewick [FS09], seems to be of easier application, because we just need to know the *first* singular term instead of a more precise expansion. BUT the problems we had to face in order to find a further expansion, arised as well while trying to verify that the function G(z) had an analytic continuation outside its circle of convergence.
- Given any $\Gamma = \Gamma_1 * \ldots * \Gamma_m$ (with at least one element of order ≥ 3), it is always possible (see e.g. [Woe00]) to find a set of measures μ_1, \ldots, μ_m s.t. $\mu^{(n)}(e) \sim C \cdot \mathbf{r}^{-n} n^{-3/2}$. This does not apply to the other behaviors.
- On $\mathbb{Z}^{d_1} * \mathbb{Z}^{d_2}$ we have either $n^{-3/2}$ or $n^{-d_i/2}$ (with $d_i \geq 5$), it follows that we can *never* have n^{-2} .

Next Work

We managed to study -transient- *Branching Random Walks* on Free Products.

Next Work

We managed to study -transient- *Branching Random Walks* on Free Products.

We obtain interesting results about the Hausdorff Dimension of the Limit set of the BRW.

Thank you for your Attention!

Bibliography

Donald I. Cartwright, Some examples of random walks on free products of discrete groups, Ann. Mat. Pura Appl. (4) 151 (1988), 1-15.

On the asymptotic behaviour of convolution powers of probabilities on discrete groups, Monatsh, Math. 107 (1989), no. 4, 287-290,

E. Candellero and L. Gilch, Phase transitions for random walk asymptotics on free products of groups, Random Structures & Algorithms, (to appear).

Donald I. Cartwright and P. M. Soardi, Random walks on free products, quotients and amalgams, Nagoya Math. J. 102 (1986), 163-180.

Philippe Flaiolet and Andrew Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math. 3 (1990). 216-240.

Philippe Flajolet and Robert Sedgewick, Analytic combinatorics, Cambridge University Press, Cambridge, 2009.

Peter Gerl, A local central limit theorem on some groups. The First Pannonian Symposium on Mathematical Statistics (Bad Tatzmannsdorf, 1979), Lecture Notes in Statist., vol. 8, Springer, New York, 1981, pp. 73-82.

Irene Hueter and Steven P. Lalley, Anisotropic branching random walks on homogeneous trees, Probab. Theory Related Fields 116 (2000), no. 1, 57-88.

Wolfgang Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, Cambridge, 2000.

