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Background and context Operator-valued free convolution semigroups Summary

Semigroups with respect to free additive convolution
Scalar-valued context.

Let X = X ∗ ∈ (A, τ) be a random variable in a
non-commutative probability space. We denote by µX its
distribution with respect to τ . Some analytic tools:

The Cauchy transform

GµX (z) = GX (z) = τ
[
(z − X )−1

]
, =z 6= 0;

The R-transform:

RX (z) = G−1
X (z)− 1

z
, |z| small,

∣∣∣∣<z
=z

∣∣∣∣ bounded.

Relevance: if X1,X2, . . . ,Xt are free, then (Voiculescu ’86)

RX1(z) + RX2(z) + · · ·+ RXt (z) = RX1+X2+···+Xt (z).
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Semigroups with respect to free additive convolution
Scalar-valued context.

Notation/theorem (Voiculescu): µX1+X2 = µX1 � µX2 . If
µX1 = · · · = µXt , we shall write µX1 � · · ·� µXt = µ�t

X1
. Note:

Rµ�t
X1

(z) = tRµX1
(z). (1)

What if t 6∈ N? Unlike in classical probability, for any t ∈ [1,+∞)
and probability measure µ on R, there exists a probability µ�t

on R so that (1) holds; {µ�t : t ≥ 1} forms a partial semigroup.
Proved first by Bercovici and Voiculescu for large t > 1 with
R-transform methods (1995);
Then by Nica and Speicher for any t ≥ 1 through a specific
operatorial construction (1998): if pt = p∗t = p2

t is free from
X and τ(pt ) = 1/t , then µpt Xpt = (1− 1

t )δ0 + 1
t D 1

t
(µ�t

X ).
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Semigroups with respect to free additive convolution
Scalar-valued context.

Like in classical probability, there exists a special class of
distributions µ for which µ�t makes sense for any t ≥ 0, namely
the freely infinitely divisible ones.

Theorem
(Bercovici-Voiculescu) A probability measure µ on R is
�-infinitely divisible if and only if there are a ∈ R and ρ a
positive measure so that

Rµ(1/z) = a−
∫
R

1 + tz
z − t

dρ(t), z 6∈ R.

(Bercovici-Pata) A probability measure µ on R is
�-infinitely divisible if and only if it is the distributional limit
of an infinitesimal array of free random variables.



Background and context Operator-valued free convolution semigroups Summary

Semigroups with respect to free additive convolution
Scalar-valued context.

Like in classical probability, there exists a special class of
distributions µ for which µ�t makes sense for any t ≥ 0, namely
the freely infinitely divisible ones.

Theorem
(Bercovici-Voiculescu) A probability measure µ on R is
�-infinitely divisible if and only if there are a ∈ R and ρ a
positive measure so that

Rµ(1/z) = a−
∫
R

1 + tz
z − t

dρ(t), z 6∈ R.

(Bercovici-Pata) A probability measure µ on R is
�-infinitely divisible if and only if it is the distributional limit
of an infinitesimal array of free random variables.



Background and context Operator-valued free convolution semigroups Summary

Semigroups with respect to free additive convolution
Scalar-valued context.

Like in classical probability, there exists a special class of
distributions µ for which µ�t makes sense for any t ≥ 0, namely
the freely infinitely divisible ones.

Theorem
(Bercovici-Voiculescu) A probability measure µ on R is
�-infinitely divisible if and only if there are a ∈ R and ρ a
positive measure so that

Rµ(1/z) = a−
∫
R

1 + tz
z − t

dρ(t), z 6∈ R.

(Bercovici-Pata) A probability measure µ on R is
�-infinitely divisible if and only if it is the distributional limit
of an infinitesimal array of free random variables.



Background and context Operator-valued free convolution semigroups Summary

Semigroups with respect to free additive convolution
Scalar-valued context.

Like in classical probability, there exists a special class of
distributions µ for which µ�t makes sense for any t ≥ 0, namely
the freely infinitely divisible ones.

Theorem
(Bercovici-Voiculescu) A probability measure µ on R is
�-infinitely divisible if and only if there are a ∈ R and ρ a
positive measure so that

Rµ(1/z) = a−
∫
R

1 + tz
z − t

dρ(t), z 6∈ R.

(Bercovici-Pata) A probability measure µ on R is
�-infinitely divisible if and only if it is the distributional limit
of an infinitesimal array of free random variables.



Background and context Operator-valued free convolution semigroups Summary

Contents

1 Background and context
Some results from scalar-valued free probability
Operator-valued distributions and fully matricial maps
Operator-valued free infinite divisibility

2 Operator-valued free convolution semigroups
A limit theorem
Free convolution semigroups indexed by cp maps



Background and context Operator-valued free convolution semigroups Summary

Operator-valued distributions and fully matricial maps

Definition
(Voiculescu) Operator-valued non-commutative probability
space: (A,EB,B), where A is a unital C∗-algebra, B is a
C∗-subalgebra of A containing the unit of A, and EB : A → B is
a unit-preserving conditional expectation.

Distribution of X ∈ A with respect to EB:

µX = {mX
n : Bn−1 → B : mX

n (b1, . . . ,bn−1) = EB(Xb1 · · ·Xbn−1X )}.

Operator valued Cauchy-Stieltjes transform of an X = X ∗ ∈ A:

GX (b) = EB

[
(b − X )−1

]
, =b ≥ ε1

for some ε > 0 (call this =b > 0). Note:

=GX (b) < 0, lim
‖b−1‖→0

bGX (b) = lim
‖b−1‖→0

GX (b)b = 1.
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Operator-valued distributions and fully matricial maps

GX (b) = EB
[
(b − X )−1] =

∑
EB(b−1(Xb−1)n), ‖b−1‖ < 1

‖X‖ ,

so GX (b) allows us to recover the symmetric moments of X :
mn(b−1, . . . ,b−1) = EB(Xb−1X · · · b−1X ).

Complete positivity, fully matricial maps (Voiculescu):
EB ⊗ IdMn(C) : A⊗Mn(C)→ B ⊗Mn(C) remains positive.
(Call EB ⊗ IdMn(C) = EMn(B).) Can define

GX⊗1n (b) = EMn(B)

[
(b − X ⊗ 1n)−1

]
, b ∈Mn(B),=b > 0,

GX⊗1n (b) =
∞∑

n=0

EMn(B)(b−1((X ⊗ 1n)b−1)n)

for any (a) ‖b−1‖ < ‖X‖−1 or (b) “b−1 nilpotent”.
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Operator-valued distributions and fully matricial maps

Meaning: if b1, . . . ,bn are given, and

b =


0 b1 0 · · · 0 0
0 0 b2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 bn
0 0 0 · · · 0 0

 , then

EMn(B)(b((X⊗1n+1)b)n−1) =


0 0 · · · EB(b1Xb2 · · ·Xbn)
0 0 · · · 0
...

...
...

...
0 0 · · · 0

 ,

and EB ⊗ IdMn+1(C)(b((X ⊗ 1n+1)b)j) = 0 for j ≥ n. Set
b1 = bn = 1 to get mX

n−1(b2, . . . ,bn−1)
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Operator-valued distributions and fully matricial maps

Free convolution: (Voiculescu ’95) If (A,EB,B) is an op-valued
noncommutative probability space and X = X ∗,Y = Y ∗ ∈ A is
free over B, then µX+Y = µX � µY is determined by µX and µY
and is called the free additive convolution of µX and µY .

Analytic tools for the study of µX � µY :

1. Op-valued R-transform: RX⊗1n (b) = G−1
X⊗1n

(b)− b−1 satisfies

RµX�µY (b) = RµX (b) + RµY (b), ‖b‖ small.

2. Analytic subordination property: there exists a unique fully
matricial self-map ω(n)

1 of the upper half-planeMn(B)+ so that

EMn(B[X ])

(
(b − (X + Y )⊗ 1n)−1

)
= (ω

(n)
1 (b)− X ⊗ 1n)−1.

By applying EMn(B), we get GX⊗1n ◦ ω
(n)
1 = G(X+Y )⊗1n .
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Operator-valued free infinite divisibility

Definition
(Speicher) The B-valued distribution µX is �-infinitely divisible if
for any n ∈ N there exist B-free identically distributed selfadjoint
B-valued random variables X1, . . . ,Xn so that

µX = µX1+···+Xn = µ�n
X1
.

Few examples: an op-valued CLT (op-valued semicircle law) of
Voiculescu (’95) and an op-valued free Poisson (Speicher).

Theorem
(M. Popa, V. Vinnikov) The B-valued distribution µ is �-infinitely
divisible if and only if there are a = a∗ ∈ B and ρ : B[X ]→ B
completely positive map so that

Rµ(b−1) = a + σ
[
(b − X )−1

]
,=b > 0.
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A limit theorem

Theorem
Assume that {Xjk : j ∈ N,1 ≤ k ≤ kj} is a triangular array of
selfadjoint random variables in (A,EB,B) with identically
distributed rows. Assume in addition that
lim supj→∞ ‖Xj1 + · · ·+ Xjkj‖ ≤ M for some fixed M ≥ 0. If
limj→∞ Xj1 + · · ·+ Xjkj exists in distribution as norm-limit of
moments, then the limit distribution is freely infinitely divisible.

Idea of proof: note that, as in the scalar case, GXj1+···+Xjkj
(b) =

G
µ
�kj
Xj1

(b) = GµXj1
(ωj(b)) (Voiculescu’s subordination) and

b = kjωj(b) + (kj − 1)GµXj1
(ωj(b))−1 (R-transform). So (i)

ωj(b) = Gνj (b)−1, where νj = (µ
�kj
Xj1

)
]1− 1

kj , and (ii) the

R-transform of νj is Rνj (b
−1) = (kj − 1)(b −GµXj1

(b)−1).
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Free convolution semigroups indexed by cp maps

Curran: Generalization of the Nica-Speicher semigroup to
op-valued distributions. In an op-valued noncommutative
probability space (A,EB,B, τ) where τ is a tracial state on A so
that τ = τ ◦ EB, a projection p of trace t which is free over B
from X = X ∗ ∈ A and classically independent from B wrt τ ,
shows a subordination property in Voiculescu’s sense for GpX .
Aside: One can show, using Dykema’s version of the
S-transform, that under the hypotheses that EB(p) is invertible
and belongs to the centre of B, that

EB(p)−1RDEB (p)(µX )(EB(p)−1b) =

EB(p)−1ΨXp

(
EB(p)−1b[1 + EB(p)−1RDEB (p)(µX )(EB(p)−1b)]−1

)
,

which is essentially the proof of Nica and Speicher from the
scalar-valued context.
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Free convolution semigroups indexed by cp maps

This (among others) suggests “generalizing” t > 1 to a cp map:

Theorem
For any cp map α : B → B so that α− 1 is still cp and invertible,
and for any B-valued selfadjoint random variable X, there exists
a B-valued selfadjoint random variable Xα so that

α(RµX (b)) = RµXα
(b).

Denote µXα by µ�α
X .

One (rough) idea of proof: (i) show that µ�α
X exists for

�-infinitely divisible distributions (easier, also thanks to the
Popa-Vinnikov characterization); (ii) show that µ]αX exists for
any cp map α; (iii) Show that µ�α

X = (B(µ]α))](α−1)−1α, where
B is the Boolean-to-free Bercovici-Pata bijection.
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Free convolution semigroups indexed by cp maps

As in the scalar-valued context, the Boolean-to-free
Bercovici-Pata bijection from the operator-valued context
embeds in a semigroups of maps on the space of distributions:

{Bα(µ) =
(
µ�(1+α)

)](1+α)−1

: α : B → B cp map}.

Bα(µ) is �-infinitely divisible for any µ when α = 1; we get then
the Boolean-to-free Bercovici-Pata bijection. Moreover, again
as in the scalar-valued context, the map
h(α,b) = GBα(µ)(b)−1 − b satisfied a “complex Burgers
equation:”

∂h(α,b)

∂α
(ρ)− ∂h(α,b)

∂b
(ρ(h(α,b))) = 0,

where ρ, α are cp, and =b > 0.
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Concluding remarks

One can generalize many results related to convolution
semigroups to the operator-valued context;
Analytic tools (the fully matricial maps) work in the
operator-valued case almost as well as in the scalar valued
case;
The full strength of Voiculescu’s subordination result has
not been used in the proofs. (So there must be more...)
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Thank you!
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