AN APPLICATION OF PROPERTY (T) FOR DISCRETE QUANTUM GROUPS

Piotr M. Soltan (joint work with **David Kyed**)

Department of Mathematical Methods in Physics, Faculty of Physics,
University of Warsaw
and
Institute of Mathematics of the Polish Academy of Sciences

April 11, 2011

Definition

$$\mathbb{G} = (\mathbf{C}(\mathbb{G}), \Delta)$$

- $C(\mathbb{G})$ unital C^* -algebra
- $\Delta \colon \mathbf{C}(\mathbb{G}) \to \mathbf{C}(\mathbb{G}) \otimes \mathbf{C}(\mathbb{G})$

$$\begin{array}{ccc} C(\mathbb{G}) & \xrightarrow{\Delta} & C(\mathbb{G}) \otimes C(\mathbb{G}) \\ & \xrightarrow{\Delta} & & & & \downarrow^{\Delta \otimes \mathrm{id}} \\ C(\mathbb{G}) \otimes C(\mathbb{G}) & \xrightarrow{\mathrm{id} \otimes \Delta} & C(\mathbb{G}) \otimes C(\mathbb{G}) \otimes C(\mathbb{G}) \end{array}$$

- $\Delta(C(\mathbb{G}))(\mathbf{1}\otimes C(\mathbb{G})) = C(\mathbb{G})\otimes C(\mathbb{G})$
- $(C(\mathbb{G}) \otimes \mathbf{1})\Delta(C(\mathbb{G})) = C(\mathbb{G}) \otimes C(\mathbb{G})$

Definition

$$\mathbb{G}=ig(\mathrm{C}(\mathbb{G}),\Deltaig)$$

- $C(\mathbb{G})$ unital C^* -algebra
- $\Delta \colon \mathbf{C}(\mathbb{G}) \to \mathbf{C}(\mathbb{G}) \otimes \mathbf{C}(\mathbb{G})$

$$\begin{array}{ccc} C(\mathbb{G}) & \xrightarrow{\Delta} & C(\mathbb{G}) \otimes C(\mathbb{G}) \\ & \xrightarrow{\Delta} & & & & \downarrow^{\Delta \otimes \mathrm{id}} \\ C(\mathbb{G}) \otimes C(\mathbb{G}) & \xrightarrow{\mathrm{id} \otimes \Delta} & C(\mathbb{G}) \otimes C(\mathbb{G}) \otimes C(\mathbb{G}) \end{array}$$

- $\bullet \ \Delta\big(C(\mathbb{G})\big)\big(\textbf{1}\otimes C(\mathbb{G})\big)=C(\mathbb{G})\otimes C(\mathbb{G})$
- $(C(\mathbb{G}) \otimes \mathbf{1})\Delta(C(\mathbb{G})) = C(\mathbb{G}) \otimes C(\mathbb{G})$

Example

- *G* compact group,
 - $C(\mathbb{G}) := C(G)$
 - $\Delta(f)(x,y) = f(xy)$

Definition

$$\mathbb{G}=ig(\mathrm{C}(\mathbb{G}),\Deltaig)$$

- $C(\mathbb{G})$ unital C^* -algebra
- $\Delta \colon C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$

$$\begin{array}{ccc} C(\mathbb{G}) & \xrightarrow{\quad \Delta \quad} & C(\mathbb{G}) \otimes C(\mathbb{G}) \\ \Delta & & & & & & \downarrow \Delta \otimes id \\ C(\mathbb{G}) \otimes C(\mathbb{G}) & \xrightarrow{id \otimes \Delta} & C(\mathbb{G}) \otimes C(\mathbb{G}) \otimes C(\mathbb{G}) \end{array}$$

- $\Delta(C(\mathbb{G}))(\mathbf{1} \otimes C(\mathbb{G})) = C(\mathbb{G}) \otimes C(\mathbb{G})$
- $(C(\mathbb{G}) \otimes \mathbf{1})\Delta(C(\mathbb{G})) = C(\mathbb{G}) \otimes C(\mathbb{G})$

Examples

- *G* compact group,
 - $C(\mathbb{G}) := C(G)$
 - $\Delta(f)(x,y) = f(xy)$
- Γ discrete group
 - $\mathbf{C}(\mathbb{G}) := \mathbf{C}^*(\Gamma)$
 - $\Delta(\gamma) = \gamma \otimes \gamma$

Definition

$$\mathbb{G}=ig(\mathrm{C}(\mathbb{G}),\Deltaig)$$

- $C(\mathbb{G})$ unital C^* -algebra
- $\Delta \colon \mathbf{C}(\mathbb{G}) \to \mathbf{C}(\mathbb{G}) \otimes \mathbf{C}(\mathbb{G})$

$$\begin{array}{ccc} C(\mathbb{G}) & \xrightarrow{\quad \Delta \quad} & C(\mathbb{G}) \otimes C(\mathbb{G}) \\ \Delta & & & & \downarrow \Delta \otimes id \\ C(\mathbb{G}) \otimes C(\mathbb{G}) & \xrightarrow{id \otimes \Delta} & C(\mathbb{G}) \otimes C(\mathbb{G}) \otimes C(\mathbb{G}) \end{array}$$

- $\Delta(C(\mathbb{G}))(\mathbf{1} \otimes C(\mathbb{G})) = C(\mathbb{G}) \otimes C(\mathbb{G})$
- $(C(\mathbb{G}) \otimes \mathbf{1})\Delta(C(\mathbb{G})) = C(\mathbb{G}) \otimes C(\mathbb{G})$

Examples

- *G* compact group,
 - $C(\mathbb{G}) := C(G)$
 - $\bullet \ \Delta(f)(x,y) = f(xy)$
- Γ discrete group
 - $C(\mathbb{G}) := C^*(\Gamma)$
 - $\Delta(\gamma) = \gamma \otimes \gamma$

or

- $C(\mathbb{G}) := C_r^*(\Gamma)$
- $\Delta(\gamma) = \gamma \otimes \gamma$

Let \mathbb{G} be a compact quantum group.

Let $\mathbb G$ be a compact quantum group. A **corepresentation** of $\mathbb G$ is a unitary matrix

$$u = \begin{bmatrix} u_{1,1} & \cdots & u_{1,n} \\ \vdots & \ddots & \vdots \\ u_{n,1} & \cdots & u_{n,n} \end{bmatrix} \in M_n(C(\mathbb{G}))$$

Let $\mathbb G$ be a compact quantum group. A **corepresentation** of $\mathbb G$ is a unitary matrix

$$u = \begin{bmatrix} u_{1,1} & \cdots & u_{1,n} \\ \vdots & \ddots & \vdots \\ u_{n,1} & \cdots & u_{n,n} \end{bmatrix} \in M_n(\mathbf{C}(\mathbb{G}))$$

such that
$$\Delta(u_{i,j}) = \sum_{k=1}^{n} u_{i,k} \otimes u_{k,j}$$
.

Let $\mathbb G$ be a compact quantum group. A **corepresentation** of $\mathbb G$ is a unitary matrix

$$u = \begin{bmatrix} u_{1,1} & \cdots & u_{1,n} \\ \vdots & \ddots & \vdots \\ u_{n,1} & \cdots & u_{n,n} \end{bmatrix} \in M_n(\mathbf{C}(\mathbb{G}))$$

such that
$$\Delta(u_{i,j}) = \sum_{k=1}^{n} u_{i,k} \otimes u_{k,j}$$
.

• The elements $\{u_{i,j}\}$ are the **matrix elements** of u.

Let $\mathbb G$ be a compact quantum group. A **corepresentation** of $\mathbb G$ is a unitary matrix

$$u = \begin{bmatrix} u_{1,1} & \cdots & u_{1,n} \\ \vdots & \ddots & \vdots \\ u_{n,1} & \cdots & u_{n,n} \end{bmatrix} \in M_n(\mathbf{C}(\mathbb{G}))$$

such that
$$\Delta(u_{i,j}) = \sum_{k=1}^{n} u_{i,k} \otimes u_{k,j}$$
.

- The elements $\{u_{i,j}\}$ are the **matrix elements** of u.
- *u* is **irreducible** if it does not commute with any nontrivial (scalar) projection.

Let $\mathbb G$ be a compact quantum group. A **corepresentation** of $\mathbb G$ is a unitary matrix

$$u = \begin{bmatrix} u_{1,1} & \cdots & u_{1,n} \\ \vdots & \ddots & \vdots \\ u_{n,1} & \cdots & u_{n,n} \end{bmatrix} \in M_n(\mathbf{C}(\mathbb{G}))$$

such that
$$\Delta(u_{i,j}) = \sum_{k=1}^{n} u_{i,k} \otimes u_{k,j}$$
.

- The elements $\{u_{i,j}\}$ are the **matrix elements** of u.
- *u* is **irreducible** if it does not commute with any nontrivial (scalar) projection.
- The span $Pol(\mathbb{G})$ of matrix elements of all irreducible corepresentations of \mathbb{G} is a Hopf algebra dense in $C(\mathbb{G})$.

 \bullet $Irr(\mathbb{G})$ — set of equivalence classes of irr(co)reps of $\mathbb{G}.$

- $Irr(\mathbb{G})$ set of equivalence classes of irr(co)reps of \mathbb{G} .
- Chose unitary representative u^{α} for each $\alpha \in Irr(\mathbb{G})$.

- $Irr(\mathbb{G})$ set of equivalence classes of irr(co)reps of $\mathbb{G}.$
- Chose unitary representative u^{α} for each $\alpha \in Irr(\mathbb{G})$.
- Then $u^{\alpha} \in M_{n_{\alpha}}(\operatorname{Pol}(\mathbb{G})) \subset M_{n_{\alpha}}(\operatorname{C}(\mathbb{G}))$.

- $Irr(\mathbb{G})$ set of equivalence classes of irr(co)reps of \mathbb{G} .
- Chose unitary representative u^{α} for each $\alpha \in Irr(\mathbb{G})$.
- Then $u^{\alpha} \in M_{n_{\alpha}}(\operatorname{Pol}(\mathbb{G})) \subset M_{n_{\alpha}}(\operatorname{C}(\mathbb{G}))$.
- Define

$$c_0(\widehat{\mathbb{G}}) = \bigoplus_{\alpha \in Irr(\mathbb{G})} \mathit{M}_{n_\alpha}(\mathbb{C})$$

- $Irr(\mathbb{G})$ set of equivalence classes of irr(co)reps of \mathbb{G} .
- Chose unitary representative u^{α} for each $\alpha \in Irr(\mathbb{G})$.
- Then $u^{\alpha} \in M_{n_{\alpha}}(\operatorname{Pol}(\mathbb{G})) \subset M_{n_{\alpha}}(\operatorname{C}(\mathbb{G}))$.
- Define

$$\mathrm{c}_0(\widehat{\mathbb{G}}) = \bigoplus_{lpha \in \mathrm{Irr}(\mathbb{G})} \mathit{M}_{n_lpha}(\mathbb{C})$$

and

$$\boldsymbol{w} = \bigoplus_{\alpha \in Irr(\mathbb{G})} u^{\alpha} \in \qquad c_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G})$$

- $Irr(\mathbb{G})$ set of equivalence classes of irr(co)reps of \mathbb{G} .
- Chose unitary representative u^{α} for each $\alpha \in Irr(\mathbb{G})$.
- Then $u^{\alpha} \in M_{n_{\alpha}}(\operatorname{Pol}(\mathbb{G})) \subset M_{n_{\alpha}}(\operatorname{C}(\mathbb{G}))$.
- Define

$$\mathrm{c}_0(\widehat{\mathbb{G}}) = \bigoplus_{lpha \in \mathrm{Irr}(\mathbb{G})} \mathit{M}_{n_lpha}(\mathbb{C})$$

and

$$\boldsymbol{w} = \bigoplus_{\alpha \in Irr(\mathbb{G})} u^{\alpha} \in \, M\big(\, c_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G})\big).$$

- $Irr(\mathbb{G})$ set of equivalence classes of irr(co)reps of \mathbb{G} .
- Chose unitary representative u^{α} for each $\alpha \in Irr(\mathbb{G})$.
- Then $u^{\alpha} \in M_{n_{\alpha}}(\operatorname{Pol}(\mathbb{G})) \subset M_{n_{\alpha}}(\operatorname{C}(\mathbb{G}))$.
- Define

$$\mathrm{c}_0(\widehat{\mathbb{G}}) = \bigoplus_{lpha \in \mathrm{Irr}(\mathbb{G})} \mathit{M}_{n_lpha}(\mathbb{C})$$

and

$$\boldsymbol{w} = \bigoplus_{\alpha \in Irr(\mathbb{G})} u^{\alpha} \in \, M\big(\, c_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G})\big).$$

• There exists a unique comultiplication $\widehat{\Delta}$ on $c_0(\widehat{\mathbb{G}})$ such that

$$(\widehat{\Delta} \otimes \mathrm{id}) \boldsymbol{w} = \boldsymbol{w}_{23} \boldsymbol{w}_{13}.$$

- $Irr(\mathbb{G})$ set of equivalence classes of irr(co)reps of \mathbb{G} .
- Chose unitary representative u^{α} for each $\alpha \in Irr(\mathbb{G})$.
- Then $u^{\alpha} \in M_{n_{\alpha}}(\operatorname{Pol}(\mathbb{G})) \subset M_{n_{\alpha}}(\operatorname{C}(\mathbb{G}))$.
- Define

$$\mathrm{c}_0(\widehat{\mathbb{G}}) = \bigoplus_{\alpha \in \mathrm{Irr}(\mathbb{G})} M_{n_\alpha}(\mathbb{C})$$

and

$$\boldsymbol{w} = \bigoplus_{\alpha \in Irr(\mathbb{G})} u^{\alpha} \in \, M\big(\, c_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G})\big).$$

• There exists a unique comultiplication $\widehat{\Delta}$ on $c_0(\widehat{\mathbb{G}})$ such that

$$(\widehat{\Delta} \otimes \mathrm{id}) \boldsymbol{w} = \boldsymbol{w}_{23} \boldsymbol{w}_{13}.$$

• $\widehat{\mathbb{G}} = (c_0(\widehat{\mathbb{G}}), \widehat{\Delta})$ is a l.c.q.g. called the **dual** of \mathbb{G} .

- $Irr(\mathbb{G})$ set of equivalence classes of irr(co)reps of \mathbb{G} .
- Chose unitary representative u^{α} for each $\alpha \in Irr(\mathbb{G})$.
- Then $u^{\alpha} \in M_{n_{\alpha}}(\operatorname{Pol}(\mathbb{G})) \subset M_{n_{\alpha}}(\operatorname{C}(\mathbb{G}))$.
- Define

$$\mathrm{c}_0(\widehat{\mathbb{G}}) = \bigoplus_{lpha \in \mathrm{Irr}(\mathbb{G})} \mathit{M}_{n_lpha}(\mathbb{C})$$

and

$$\boldsymbol{w} = \bigoplus_{\alpha \in Irr(\mathbb{G})} u^{\alpha} \in \, M\big(\, c_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G})\big).$$

• There exists a unique comultiplication $\widehat{\Delta}$ on $c_0(\widehat{\mathbb{G}})$ such that

$$(\widehat{\Delta} \otimes \mathrm{id}) \boldsymbol{w} = \boldsymbol{w}_{23} \boldsymbol{w}_{13}.$$

- $\widehat{\mathbb{G}} = (c_0(\widehat{\mathbb{G}}), \widehat{\Delta})$ is a l.c.q.g. called the **dual** of \mathbb{G} .
- $\widehat{\mathbb{G}}$ is a discrete quantum group.

• maximal (universal) C*-norm

- maximal (universal) C*-norm
 - \leadsto the completion: $C(\mathbb{G}_{max})$

- maximal (universal) C*-norm
 - \leadsto the completion: $C(\mathbb{G}_{max})$

Example: $Pol(\mathbb{G}) = \mathbb{C}[\Gamma]$ $\hookrightarrow C(\mathbb{G}_{max}) = C^*_{full}(\Gamma)$

- maximal (universal) C*-norm \leadsto the completion: $C(\mathbb{G}_{max})$
- minimal (reduced) C*-norm

Example:
$$Pol(\mathbb{G}) = \mathbb{C}[\Gamma]$$

 $\hookrightarrow C(\mathbb{G}_{max}) = C^*_{full}(\Gamma)$

- maximal (universal) C*-norm
 - \leadsto the completion: $C(\mathbb{G}_{max})$
- minimal (reduced) C*-norm
 - \leadsto the completion: $C(\mathbb{G}_{min})$

Example:
$$Pol(\mathbb{G}) = \mathbb{C}[\Gamma]$$

 $\hookrightarrow C(\mathbb{G}_{max}) = C^*_{full}(\Gamma)$

- maximal (universal) C*-norm
 - \leadsto the completion: $C(\mathbb{G}_{max})$
- minimal (reduced) C*-norm
 - \leadsto the completion: $C(\mathbb{G}_{min})$

Example:
$$Pol(\mathbb{G}) = \mathbb{C}[\Gamma]$$

$$\rightsquigarrow \ C(\mathbb{G}_{max}) = C^*_{full}(\Gamma)$$

$$\leadsto \ C(\mathbb{G}_{min}) = C^*_r(\Gamma)$$

- maximal (universal) C*-norm
- \leadsto the completion: $C(\mathbb{G}_{max})$
- minimal (reduced) C*-norm

 ∴ the completion: C(G_{min})
- $\bullet \|a\|_{\sim} = \max\{\|a\|, |\epsilon(a)|\}$

Example:
$$Pol(\mathbb{G}) = \mathbb{C}[\Gamma]$$

 $\hookrightarrow C(\mathbb{G}_{max}) = C^*_{full}(\Gamma)$

$$ightsquigarrow C(\mathbb{G}_{min}) = C_r^*(\Gamma)$$

- maximal (universal) C*-norm
 - \leadsto the completion: $C(\mathbb{G}_{max})$
- minimal (reduced) C*-norm
- ightarrow the completion: $\mathrm{C}(\mathbb{G}_{\min})$ • $\|a\|_{\sim} = \max\{\|a\|, |\epsilon(a)|\}$
 - \leadsto the completion: $C(\widetilde{\mathbb{G}})$

Example: $Pol(\mathbb{G}) = \mathbb{C}[\Gamma]$ $\hookrightarrow C(\mathbb{G}_{max}) = C_{f,\Pi}^*(\Gamma)$

$$ightsquigarrow C(\mathbb{G}_{min}) = C_r^*(\Gamma)$$

- maximal (universal) C*-norm
 - \leadsto the completion: $C(\mathbb{G}_{max})$
- minimal (reduced) C*-norm
- ightarrow the completion: $\mathrm{C}(\mathbb{G}_{\min})$ • $\|a\|_{\sim} = \max\{\|a\|, |\epsilon(a)|\}$
 - \leadsto the completion: $C(\widetilde{\mathbb{G}})$

Example:
$$Pol(\mathbb{G}) = \mathbb{C}[\Gamma]$$

$$ightsquigarrow C(\mathbb{G}_{max}) = C^*_{full}(\Gamma)$$

$$\rightsquigarrow \ C(\mathbb{G}_{min}) = C_r^*(\Gamma)$$

$$ightharpoonup C(\widetilde{\mathbb{G}}) = ??$$

- maximal (universal) C*-norm
 - \leadsto the completion: $C(\mathbb{G}_{max})$
- minimal (reduced) C*-norm
- \rightarrow the completion: $C(\mathbb{G}_{\min})$
- $\|a\|_{\sim} = \max\{\|a\|, |\epsilon(a)|\}$
 - \leadsto the completion: $C(\widetilde{\mathbb{G}})$

Example:
$$Pol(\mathbb{G}) = \mathbb{C}[\Gamma]$$

$$ightharpoonup C(\mathbb{G}_{max}) = C_{full}^*(\Gamma)$$

$$\leadsto \ C(\mathbb{G}_{min}) = C^*_r(\Gamma)$$

$$\leadsto \mathbf{C}(\widetilde{\mathbb{G}}) = ??$$

DEFINITION

A C*-norm on $Pol(\mathbb{G})$ is a quantum group norm if

$$\Delta \colon \operatorname{Pol}(\mathbb{G}) \longrightarrow \operatorname{Pol}(\mathbb{G}) \otimes \operatorname{Pol}(\mathbb{G})$$

extends to completions.

- maximal (universal) C*-norm
 - \leadsto the completion: $C(\mathbb{G}_{max})$
- minimal (reduced) C*-norm
- \rightarrow the completion: $C(\mathbb{G}_{\min})$
- $\|a\|_{\sim} = \max\{\|a\|, |\epsilon(a)|\}$
- \leadsto the completion: $C(\widetilde{\mathbb{G}})$

Example:
$$Pol(\mathbb{G}) = \mathbb{C}[\Gamma]$$

$$ightharpoonup C(\mathbb{G}_{max}) = C_{full}^*(\Gamma)$$

$$\leadsto \ C(\mathbb{G}_{min}) = C^*_r(\Gamma)$$

$$ightharpoonup C(\widetilde{\mathbb{G}}) = ??$$

DEFINITION

A C*-norm on $Pol(\mathbb{G})$ is a quantum group norm if

$$\Delta \colon \operatorname{Pol}(\mathbb{G}) \longrightarrow \operatorname{Pol}(\mathbb{G}) \otimes \operatorname{Pol}(\mathbb{G})$$

extends to completions.

FACT

All of the above C*-norms are quantum group norms.

EXOTIC COMPLETIONS

• We are interested in quantum group norms on $Pol(\mathbb{G})$ such that if $C(\mathbb{G})$ is the completion we have

- We are interested in quantum group norms on $Pol(\mathbb{G})$ such that if $C(\mathbb{G})$ is the completion we have
 - $C(\mathbb{G}_{min}) \neq C(\mathbb{G})$,

- We are interested in quantum group norms on $Pol(\mathbb{G})$ such that if $C(\mathbb{G})$ is the completion we have
 - $C(\mathbb{G}_{\min}) \neq C(\mathbb{G})$,
 - $C(\mathbb{G}) \neq C(\mathbb{G}_{max})$,

- We are interested in quantum group norms on $Pol(\mathbb{G})$ such that if $C(\mathbb{G})$ is the completion we have
 - $C(\mathbb{G}_{min}) \neq C(\mathbb{G})$,
 - $C(\mathbb{G}) \neq C(\mathbb{G}_{max})$,
 - $C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) \neq C(\mathbb{G}_{max})$

- We are interested in quantum group norms on $Pol(\mathbb{G})$ such that if $C(\mathbb{G})$ is the completion we have
 - $C(\mathbb{G}_{min}) \neq C(\mathbb{G})$,
 - $C(\mathbb{G}) \neq C(\mathbb{G}_{max})$,
 - $C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) \neq C(\mathbb{G}_{max})$

- We are interested in quantum group norms on $Pol(\mathbb{G})$ such that if $C(\mathbb{G})$ is the completion we have
 - $C(\mathbb{G}_{min}) \neq C(\mathbb{G})$,
 - $C(\mathbb{G}) \neq C(\mathbb{G}_{max})$,
 - $C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) \neq C(\mathbb{G}_{max})$

- Another interesting possibility is
 - $C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) = C(\mathbb{G}_{max}).$

- We are interested in **quantum group norms** on $Pol(\mathbb{G})$ such that if $C(\mathbb{G})$ is the completion we have
 - $C(\mathbb{G}_{min}) \neq C(\mathbb{G})$,
 - $C(\mathbb{G}) \neq C(\mathbb{G}_{max})$,
 - $C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) \neq C(\mathbb{G}_{max})$

- Another interesting possibility is
 - $C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) = C(\mathbb{G}_{max}).$

- We are interested in **quantum group norms** on $Pol(\mathbb{G})$ such that if $C(\mathbb{G})$ is the completion we have
 - $C(\mathbb{G}_{min}) \neq C(\mathbb{G})$,
 - $C(\mathbb{G}) \neq C(\mathbb{G}_{max})$,
 - $C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) \neq C(\mathbb{G}_{max})$

- Another interesting possibility is
 - $C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) = C(\mathbb{G}_{max}).$
- We call such norms **exotic** quantum group norms.

- We are interested in **quantum group norms** on $Pol(\mathbb{G})$ such that if $C(\mathbb{G})$ is the completion we have
 - $C(\mathbb{G}_{min}) \neq C(\mathbb{G})$,
 - $C(\mathbb{G}) \neq C(\mathbb{G}_{max})$,
 - $C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) \neq C(\mathbb{G}_{max})$

- Another interesting possibility is
 - $C(\mathbb{G}) \neq C(\widetilde{\mathbb{G}}) = C(\mathbb{G}_{max})$.
- We call such norms **exotic** quantum group norms.
- Existence of exotic norms is interesting for the theory of quantum group actions.

DEFINITION

A **corepresentation** of $\widehat{\mathbb{G}}$ is a unitary V of the form

$$V = (\mathrm{id} \otimes \pi) \boldsymbol{w} \in \mathrm{M}(\mathrm{c}_0(\widehat{\mathbb{G}}) \otimes \mathcal{K}(\mathcal{H})),$$

DEFINITION

A **corepresentation** of $\widehat{\mathbb{G}}$ is a unitary V of the form

$$V = (\mathrm{id} \otimes \pi) \boldsymbol{w} \in \mathrm{M}(\mathrm{c}_0(\widehat{\mathbb{G}}) \otimes \mathcal{K}(\mathcal{H})),$$

$$\bullet \ \ Recall: \ \boldsymbol{w} = \bigoplus_{\alpha \in Irr(\mathbb{G})} u^{\alpha} \in M\big(c_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G}_{max})\big).$$

DEFINITION

A **corepresentation** of $\widehat{\mathbb{G}}$ is a unitary V of the form

$$V = (\mathrm{id} \otimes \pi) \boldsymbol{w} \in \mathrm{M}(\mathrm{c}_0(\widehat{\mathbb{G}}) \otimes \mathcal{K}(\mathcal{H})),$$

- Recall: $\boldsymbol{w} = \bigoplus_{\alpha \in Irr(\mathbb{G})} u^{\alpha} \in M \big(c_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G}_{max}) \big).$
- We have $(\widehat{\Delta} \otimes id)V = V_{23}V_{13}$.

DEFINITION

A **corepresentation** of $\widehat{\mathbb{G}}$ is a unitary V of the form

$$V = (\mathrm{id} \otimes \pi) \boldsymbol{w} \in \mathrm{M}(\mathrm{c}_0(\widehat{\mathbb{G}}) \otimes \mathcal{K}(\mathcal{H})),$$

- Recall: $\boldsymbol{w} = \bigoplus_{\alpha \in Irr(\mathbb{G})} u^{\alpha} \in M \big(c_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G}_{max}) \big).$
- We have $(\widehat{\Delta} \otimes id)V = V_{23}V_{13}$.
- There is a notion of tensor product: $V \oplus U = V_{12}U_{13}$.

DEFINITION

A **corepresentation** of $\widehat{\mathbb{G}}$ is a unitary V of the form

$$V = (\mathrm{id} \otimes \pi) \boldsymbol{w} \in \mathrm{M}(\mathrm{c}_0(\widehat{\mathbb{G}}) \otimes \mathcal{K}(\mathcal{H})),$$

- Recall: $\boldsymbol{w} = \bigoplus_{\alpha \in Irr(\mathbb{G})} u^{\alpha} \in M \big(c_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G}_{max}) \big).$
- We have $(\widehat{\Delta} \otimes id)V = V_{23}V_{13}$.
- There is a notion of tensor product: $V \oplus U = V_{12}U_{13}$.
- Contragredient corepresentation: $V^c = V^{\top \otimes \widehat{R}}$

DEFINITION

A **corepresentation** of $\widehat{\mathbb{G}}$ is a unitary V of the form

$$V = (\mathrm{id} \otimes \pi) \boldsymbol{w} \in \mathrm{M}(\mathrm{c}_0(\widehat{\mathbb{G}}) \otimes \mathcal{K}(\mathcal{H})),$$

- Recall: $\boldsymbol{w} = \bigoplus_{\alpha \in Irr(\mathbb{G})} u^{\alpha} \in M \big(c_0(\widehat{\mathbb{G}}) \otimes C(\mathbb{G}_{max}) \big).$
- We have $(\widehat{\Delta} \otimes id)V = V_{23}V_{13}$.
- There is a notion of tensor product: $V \oplus U = V_{12}U_{13}$.
- Contragredient corepresentation: $V^c = V^{\top \otimes \widehat{R}}$ (\widehat{R} is the **unitary antipode** of $\widehat{\mathbb{G}}$ and \top is the transposition).

Digression on $L^2(\mathbb{G})$

• \mathbb{G} has **Haar measure** — certain state h on $C(\mathbb{G})$,

- \mathbb{G} has **Haar measure** certain state h on $C(\mathbb{G})$,
- $L^2(\mathbb{G})$ is the GNS space obtained from h,

- \mathbb{G} has **Haar measure** certain state h on $C(\mathbb{G})$,
- $L^2(\mathbb{G})$ is the GNS space obtained from h,
- $L^2(\mathbb{G})$ has basis

$$\left\{u_{i,j}^{\alpha} \middle| \alpha \in Irr(\mathbb{G}), i,j = 1, \dots, n_{\alpha}\right\},$$

- \mathbb{G} has **Haar measure** certain state h on $C(\mathbb{G})$,
- $L^2(\mathbb{G})$ is the GNS space obtained from h,
- $L^2(\mathbb{G})$ has basis

$$\{u_{i,j}^{\alpha} | \alpha \in Irr(\mathbb{G}), i,j = 1, \dots, n_{\alpha}\},\$$

 there are interesting Peter-Weyl-Woronowicz orthogonality relations,

- \mathbb{G} has **Haar measure** certain state h on $C(\mathbb{G})$,
- $L^2(\mathbb{G})$ is the GNS space obtained from h,
- $L^2(\mathbb{G})$ has basis

$$\{u_{i,j}^{\alpha} | \alpha \in Irr(\mathbb{G}), i,j = 1, \dots, n_{\alpha}\},\$$

- there are interesting Peter-Weyl-Woronowicz orthogonality relations,
- we write $L^2(\mathbb{G})^{\alpha}$ for the subspace spanned by

$$\{u_{i,j}^{\alpha} | i,j=1,\ldots,n_{\alpha}\},\$$

- \mathbb{G} has **Haar measure** certain state h on $C(\mathbb{G})$,
- $L^2(\mathbb{G})$ is the GNS space obtained from h,
- $L^2(\mathbb{G})$ has basis

$$\{u_{i,j}^{\alpha} | \alpha \in Irr(\mathbb{G}), i,j = 1, \dots, n_{\alpha}\},\$$

- there are interesting Peter-Weyl-Woronowicz orthogonality relations,
- we write $L^2(\mathbb{G})^{\alpha}$ for the subspace spanned by

$$\{u_{i,j}^{\alpha}|i,j=1,\ldots,n_{\alpha}\},\$$

• $c_0(\widehat{\mathbb{G}}) = \bigoplus_{\alpha \in \mathrm{Irr}(\mathbb{G})} M_{n_\alpha}(\mathbb{C})$ acts naturally on $L^2(\mathbb{G}) = \bigoplus_{\alpha \in \mathrm{Irr}(\mathbb{G})} L^2(\mathbb{G})^{\alpha}.$

Property (T)

PROPERTY (T)

DEFINITION (P. FIMA, 2008)

A corepresentation V ∈ M(c₀(G) ⊗ ℋ(ℋ)) of G has almost invariant vectors if for any finite subset E ⊂ Irr(G) and any δ > 0 there exists ξ ∈ ℋ such that

$$\left\| V^{\alpha}(\eta \otimes \xi) - \eta \otimes \xi \right\| < \delta \|\eta\| \|\xi\|$$

for all $\alpha \in E$ and all $\eta \in L^2(\mathbb{G})^{\alpha}$.

PROPERTY (T)

DEFINITION (P. FIMA, 2008)

A corepresentation V ∈ M(c₀(G) ⊗ ℋ(ℋ)) of G has almost invariant vectors if for any finite subset E ⊂ Irr(G) and any δ > 0 there exists ξ ∈ ℋ such that

$$\left\|V^{\alpha}(\eta \otimes \xi) - \eta \otimes \xi\right\| < \delta \|\eta\| \|\xi\|$$

for all $\alpha \in E$ and all $\eta \in L^2(\mathbb{G})^{\alpha}$.

• $\widehat{\mathbb{G}}$ has property (T) if every corepresentation V with almost invariant vectors has a non-zero invariant vector

PROPERTY (T)

DEFINITION (P. FIMA, 2008)

A corepresentation V ∈ M(c₀(G) ⊗ ℋ(ℋ)) of G has almost invariant vectors if for any finite subset E ⊂ Irr(G) and any δ > 0 there exists ξ ∈ ℋ such that

$$||V^{\alpha}(\eta \otimes \xi) - \eta \otimes \xi|| < \delta ||\eta|| ||\xi||$$

for all $\alpha \in E$ and all $\eta \in L^2(\mathbb{G})^{\alpha}$.

• $\widehat{\mathbb{G}}$ has property (T) if every corepresentation V with almost invariant vectors has a non-zero invariant vector i.e. a non-zero $\xi \in \mathscr{H}$ such that

$$V(\eta \otimes \xi) = \eta \otimes \xi$$

for all $\eta \in L^2(\mathbb{G})$.

THEOREM (DAVID KYED & P.M.S.) *The following are equivalent:*

THEOREM (DAVID KYED & P.M.S.)

The following are equivalent:

• $\widehat{\mathbb{G}}$ has property (T),

THEOREM (DAVID KYED & P.M.S.)

- $\widehat{\mathbb{G}}$ has property (T),
- the counit ϵ is an isolated point of Spec $(C(\mathbb{G}_{max}))$,

THEOREM (DAVID KYED & P.M.S.)

- $\widehat{\mathbb{G}}$ has property (T),
- the counit ϵ is an isolated point of $Spec(C(\mathbb{G}_{max}))$,
- all finite dimensional representations are isolated points of $Spec(C(\mathbb{G}_{max}))$,

THEOREM (DAVID KYED & P.M.S.)

- $\widehat{\mathbb{G}}$ has property (T),
- the counit ϵ is an isolated point of Spec $(C(\mathbb{G}_{max}))$,
- all finite dimensional representations are isolated points of $Spec(C(\mathbb{G}_{max}))$,
- the C*-algebra $C(\mathbb{G}_{max})$ has property (T) of Bekka,

THEOREM (DAVID KYED & P.M.S.)

- $\widehat{\mathbb{G}}$ has property (T),
- the counit ϵ is an isolated point of $Spec(C(\mathbb{G}_{max}))$,
- all finite dimensional representations are isolated points of Spec($C(\mathbb{G}_{max})$),
- the C^* -algebra $C(\mathbb{G}_{max})$ has property (T) of Bekka,
- there exists a unique minimal projection p in the center of $C(\mathbb{G}_{max})$ with $\epsilon(p)=1$,

THEOREM (DAVID KYED & P.M.S.)

- $\widehat{\mathbb{G}}$ has property (T),
- the counit ϵ is an isolated point of $Spec(C(\mathbb{G}_{max}))$,
- all finite dimensional representations are isolated points of Spec($C(\mathbb{G}_{max})$),
- the C^* -algebra $C(\mathbb{G}_{max})$ has property (T) of Bekka,
- there exists a unique minimal projection p in the center of $C(\mathbb{G}_{max})$ with $\epsilon(p)=1$,
- there exists a minimal projection $p \in C(\mathbb{G}_{max})$ with $\epsilon(p)=1$,

THEOREM (DAVID KYED & P.M.S.)

- $\widehat{\mathbb{G}}$ has property (T),
- the counit ϵ is an isolated point of $Spec(C(\mathbb{G}_{max}))$,
- all finite dimensional representations are isolated points of Spec($C(\mathbb{G}_{max})$),
- the C^* -algebra $C(\mathbb{G}_{max})$ has property (T) of Bekka,
- there exists a unique minimal projection p in the center of $C(\mathbb{G}_{max})$ with $\epsilon(p)=1$,
- there exists a minimal projection $p \in C(\mathbb{G}_{max})$ with $\epsilon(p)=1$,
- $\widehat{\mathbb{G}}$ has property (T) as defined by Petrescu & Joita (1992).

OTHER CHARACTERIZATIONS

THEOREM (DAVID KYED & P.M.S.)

The following are equivalent:

- $\widehat{\mathbb{G}}$ has property (T),
- the counit ϵ is an isolated point of $Spec(C(\mathbb{G}_{max}))$,
- all finite dimensional representations are isolated points of Spec $\left(C(\mathbb{G}_{max})\right)$,
- the C^* -algebra $C(\mathbb{G}_{max})$ has property (T) of Bekka,
- there exists a unique minimal projection p in the center of $C(\mathbb{G}_{max})$ with $\epsilon(p)=1$,
- there exists a minimal projection $p \in C(\mathbb{G}_{max})$ with $\epsilon(p)=1$,
- $\widehat{\mathbb{G}}$ has property (T) as defined by Petrescu & Joita (1992),
- G has property (T) as defined by Bédos, Conti & Tuset (2005).

THEOREM

Take a non-coamenable \mathbb{G} .

THEOREM

Take a non-coamenable \mathbb{G}^*

^{*}i.e. $C(\mathbb{G}_{min}) \neq C(\mathbb{G}_{max})$

THEOREM

Take a non-coamenable \mathbb{G}^* . Then

^{*}i.e. $C(\mathbb{G}_{min}) \neq C(\mathbb{G}_{max})$

THEOREM

Take a non-coamenable \mathbb{G}^* . Then

• $C(\mathbb{G}_{min}) \neq C(\widetilde{\mathbb{G}_{min}})$,

^{*}i.e. $C(\mathbb{G}_{min}) \neq C(\mathbb{G}_{max})$

THEOREM

Take a non-coamenable \mathbb{G}^* . Then

- $C(\mathbb{G}_{\min}) \neq C(\widetilde{\mathbb{G}_{\min}})$,
- if $C(\widetilde{\mathbb{G}_{\min}}) = C(\mathbb{G}_{\max})$ then $\widehat{\mathbb{G}}$ has property (T).

^{*}i.e. $C(\mathbb{G}_{min}) \neq C(\mathbb{G}_{max})$

THEOREM

Take a non-coamenable \mathbb{G}^* . Then

- $C(\mathbb{G}_{\min}) \neq C(\widetilde{\mathbb{G}}_{\min})$,
- if $C(\widetilde{\mathbb{G}_{min}}) = C(\mathbb{G}_{max})$ then $\widehat{\mathbb{G}}$ has property (T).

This provides many examples such that

$$\mathbb{G}_{min} \neq \mathbb{G} \neq \mathbb{G}_{max}$$

^{*}i.e. $C(\mathbb{G}_{min}) \neq C(\mathbb{G}_{max})$

THEOREM

Take a non-coamenable \mathbb{G}^* . Then

- $C(\mathbb{G}_{min}) \neq C(\widetilde{\mathbb{G}_{min}})$,
- if $C(\widetilde{\mathbb{G}_{min}}) = C(\mathbb{G}_{max})$ then $\widehat{\mathbb{G}}$ has property (T).

This provides many examples such that

$$\mathbb{G}_{min} \neq \mathbb{G} \neq \mathbb{G}_{max}$$

(take $\mathbb{G}=\widetilde{\mathbb{G}_{min}}$ with \mathbb{G} not coamenable and $\widehat{\mathbb{G}}$ without property (T)).

^{*}i.e. $C(\mathbb{G}_{min}) \neq C(\mathbb{G}_{max})$

THEOREM (DAVID KYED & P.M.S.) Let V and U be corepresentations of $\widehat{\mathbb{G}}$.

THEOREM (DAVID KYED & P.M.S.)

Let V and U be corepresentations of $\widehat{\mathbb{G}}$.

• If there is a finite dimensional W such that $W \leq V$ and $W \leq U^c$ then the trivial corepresentation is contained in $V \oplus U$.

THEOREM (DAVID KYED & P.M.S.)

Let V and U be corepresentations of $\widehat{\mathbb{G}}$.

- If there is a finite dimensional W such that $W \leq V$ and $W \leq U^c$ then the trivial corepresentation is contained in $V \oplus U$.
- If $\widehat{\mathbb{G}}$ is unimodular

THEOREM (DAVID KYED & P.M.S.)

Let V and U be corepresentations of $\widehat{\mathbb{G}}$.

- If there is a finite dimensional W such that $W \leq V$ and $W \leq U^c$ then the trivial corepresentation is contained in $V \cap U$.
- If $\widehat{\mathbb{G}}$ is unimodular*

^{*}the Haar measure on $\mathbb G$ is a trace

THEOREM (DAVID KYED & P.M.S.)

Let V and U be corepresentations of $\widehat{\mathbb{G}}$.

- If there is a finite dimensional W such that $W \leq V$ and $W \leq U^c$ then the trivial corepresentation is contained in $V \oplus U$.
- If $\widehat{\mathbb{G}}$ is unimodular* and $V \oplus U$ contains the trivial corepresentation then there exists a finite dimensional W such that $W \leq V$ and $W \leq U^c$.

 $^{^*}$ the Haar measure on $\mathbb G$ is a trace

THEOREM (DAVID KYED & P.M.S.)

Let V and U be corepresentations of $\widehat{\mathbb{G}}$.

- If there is a finite dimensional W such that $W \leq V$ and $W \leq U^c$ then the trivial corepresentation is contained in $V \oplus U$.
- If $\widehat{\mathbb{G}}$ is unimodular* and $V \oplus U$ contains the trivial corepresentation then there exists a finite dimensional W such that $W \leq V$ and $W \leq U^c$.

FACT

Any discrete quantum group with property (T) is unimodular.

 $^{^*}$ the Haar measure on $\mathbb G$ is a trace

• Let Π be the representation of $C(\mathbb{G}_{max})$ which is the direct sum of all infinite-dimensional irreducible representations.

• Let Π be the representation of $C(\mathbb{G}_{max})$ which is the direct sum of all infinite-dimensional irreducible representations.

THEOREM

If $\widehat{\mathbb{G}}$ has property (T) then the C^* -norm on $Pol(\mathbb{G})$ defined by Π is a quantum group norm.

• Let Π be the representation of $C(\mathbb{G}_{max})$ which is the direct sum of all infinite-dimensional irreducible representations.

THEOREM

If $\widehat{\mathbb{G}}$ has property (T) then the C^* -norm on $Pol(\mathbb{G})$ defined by Π is a quantum group norm.

• Denote the resulting quantum group by \mathbb{G}_{Π} .

 \bullet Take $\widehat{\mathbb{G}}$ an infinite property (T) discrete quantum group.

- Take $\widehat{\mathbb{G}}$ an infinite property (T) discrete quantum group.
- \mathbb{G}_{Π} does not admit a continuous counit, so

$$\mathbb{G}_\Pi \neq \widetilde{\mathbb{G}_\Pi}.$$

- Take $\widehat{\mathbb{G}}$ an infinite property (T) discrete quantum group.
- \mathbb{G}_{Π} does not admit a continuous counit, so

$$\mathbb{G}_\Pi \neq \widetilde{\mathbb{G}_\Pi}.$$

• It could happen that $\mathbb{G}_{min} = \mathbb{G}_{\Pi}$

- Take $\widehat{\mathbb{G}}$ an infinite property (T) discrete quantum group.
- \mathbb{G}_{Π} does not admit a continuous counit, so

$$\mathbb{G}_\Pi \neq \widetilde{\mathbb{G}_\Pi}.$$

• It could happen that $\mathbb{G}_{min}=\mathbb{G}_{\Pi},$ but in most cases

$$\mathbb{G}_{min}\neq \mathbb{G}_{\Pi}.$$

- Take $\widehat{\mathbb{G}}$ an infinite property (T) discrete quantum group.
- \mathbb{G}_{Π} does not admit a continuous counit, so

$$\mathbb{G}_{\Pi} \neq \widetilde{\mathbb{G}_{\Pi}}.$$

• It could happen that $\mathbb{G}_{min}=\mathbb{G}_{\Pi},$ but in most cases

$$\mathbb{G}_{min} \neq \mathbb{G}_{\Pi}.$$

• There are examples when $\widetilde{\mathbb{G}_{\Pi}}=\mathbb{G}_{max}$

- Take $\widehat{\mathbb{G}}$ an infinite property (T) discrete quantum group.
- \mathbb{G}_{Π} does not admit a continuous counit, so

$$\mathbb{G}_{\Pi} \neq \widetilde{\mathbb{G}_{\Pi}}.$$

• It could happen that $\mathbb{G}_{min}=\mathbb{G}_{\Pi},$ but in most cases

$$\mathbb{G}_{min} \neq \mathbb{G}_{\Pi}$$
.

• There are examples when $\widetilde{\mathbb{G}_\Pi}=\mathbb{G}_{max},$ but in most cases

$$\widetilde{\mathbb{G}_{\Pi}} \neq \mathbb{G}_{max}$$
.

• G — coamenable

• G — coamenable

$$\mathbb{G}_{min}=\mathbb{G}=\widetilde{\mathbb{G}}=\mathbb{G}_{max}.$$

• G — coamenable

$$\mathbb{G}_{min}=\mathbb{G}=\widetilde{\mathbb{G}}=\mathbb{G}_{max}.$$

• \mathbb{G} — non-coamenable, $\widehat{\mathbb{G}}$ not Kazhdan

• G — coamenable

$$\mathbb{G}_{min}=\mathbb{G}=\widetilde{\mathbb{G}}=\mathbb{G}_{max}.$$

• \mathbb{G} — non-coamenable, $\widehat{\mathbb{G}}$ not Kazhdan

$$\mathbb{G}_{min}=\mathbb{G}\neq\widetilde{\mathbb{G}}\neq\mathbb{G}_{max}.$$

• G — coamenable

$$\mathbb{G}_{min}=\mathbb{G}=\widetilde{\mathbb{G}}=\mathbb{G}_{max}.$$

• \mathbb{G} — non-coamenable, $\widehat{\mathbb{G}}$ not Kazhdan

$$\mathbb{G}_{min}=\mathbb{G}\neq\widetilde{\mathbb{G}}\neq\mathbb{G}_{max}.$$

ullet $\widehat{\mathbb{G}}$ — Kazhdan, minimally almost periodic

• G — coamenable

$$\mathbb{G}_{\min} = \mathbb{G} = \widetilde{\mathbb{G}} = \mathbb{G}_{\max}.$$

• \mathbb{G} — non-coamenable, $\widehat{\mathbb{G}}$ not Kazhdan

$$\mathbb{G}_{min}=\mathbb{G}\neq\widetilde{\mathbb{G}}\neq\mathbb{G}_{max}.$$

ullet $\widehat{\mathbb{G}}$ — Kazhdan, minimally almost periodic

$$\mathbb{G}_{\min} \neq \mathbb{G} \neq \widetilde{\mathbb{G}} = \mathbb{G}_{\max}.$$

• G — coamenable

$$\mathbb{G}_{min}=\mathbb{G}=\widetilde{\mathbb{G}}=\mathbb{G}_{max}.$$

ullet \mathbb{G} — non-coamenable, $\widehat{\mathbb{G}}$ not Kazhdan

$$\mathbb{G}_{min}=\mathbb{G}\neq\widetilde{\mathbb{G}}\neq\mathbb{G}_{max}.$$

ullet $\widehat{\mathbb{G}}$ — Kazhdan, minimally almost periodic

$$\mathbb{G}_{\min} \neq \mathbb{G} \neq \widetilde{\mathbb{G}} = \mathbb{G}_{\max}.$$

ullet $\widehat{\mathbb{G}}$ — Kazhdan, not minimally almost periodic

• G — coamenable

$$\mathbb{G}_{\min} = \mathbb{G} = \widetilde{\mathbb{G}} = \mathbb{G}_{\max}.$$

ullet \mathbb{G} — non-coamenable, $\widehat{\mathbb{G}}$ not Kazhdan

$$\mathbb{G}_{min}=\mathbb{G}\neq\widetilde{\mathbb{G}}\neq\mathbb{G}_{max}.$$

ullet $\widehat{\mathbb{G}}$ — Kazhdan, minimally almost periodic

$$\mathbb{G}_{\min} \neq \mathbb{G} \neq \widetilde{\mathbb{G}} = \mathbb{G}_{\max}.$$

ullet $\widehat{\mathbb{G}}$ — Kazhdan, not minimally almost periodic

$$\mathbb{G}_{\min} \neq \mathbb{G} \neq \widetilde{\mathbb{G}} \neq \mathbb{G}_{\max}$$
.