
Path cocycles in quantum Cayley trees
and L2-cohomology

Roland Vergnioux
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Introduction Universal discrete quantum groups

Universal discrete quantum groups
Consider the unital ∗-algebras defined by generators and relations:

Au(n) = 〈uij | (uij) and (u∗ij) unitary〉,
Ao(n) = 〈uij | uij = u∗ij , (uij) unitary〉,

with 1 ≤ i , j ≤ n. They become Hopf ∗-algebras with

∆(uij) =
∑

uik⊗ukj , S(uij) = u∗ji , ε(uij) = δij .

Moreover there exists a unique positive Haar integral h : A → C.
We can consider the GNS construction:

H = L2(A , h), λ : A → B(H), M = λ(A )′′ ⊂ B(H).

Classical counterpart: A = CG , H = `2(G ), with G a discrete group.
Heuristically : Au(n) = CFUn, Ao(n) = CFOn, where FOn, FUn are
discrete quantum groups.
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Introduction Universal discrete quantum groups

Analogies with free group algebras

there are natural maps Au(n)� CFn, Ao(n)� C(Z/2Z)∗n ;

we have Au(n)� B for any B associated with a unimodular discrete
quantum group and some n ;

FUn, FOn have the Property of Rapid Decay ;

the C ∗-algebras Au(n)red, Ao(n)red are simple, non-nuclear, exact ;

M = λ(Ao(n))′′, λ(Au(n))′′ are solid II1 factors ;

FOn is K -amenable ;

FOn, FUn satisfy Haagerup’s Approximation Property.

[Banica, V., Vaes, Vander Vennet, Voigt, Brannan]

The case n = 2 behaves differently, e.g. Ao(I2) = C (SU−1(2)) has
polynomial growth, and will be excluded in this talk.
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Introduction The main result

The main result

For an ICC group G , we can take A = CG and consider the Hochschild
cohomology groups H1(A , λHε) and H1(A , λMε).
These groups are moreover right M-modules and we have

β
(2)
1 (G ) = dimM H1(A ,H) = dimM H1(A ,M).

Recall that β
(2)
1 (Fn) = n−1. In the case of the orthogonal universal discrete

quantum groups we have the strongly contrasting result:

Theorem

For n ≥ 3 we have H1(Ao(n),H) = H1(Ao(n),M) = 0.

In particular β
(2)
1 (Ao(n)) = 0. On the other hand β

(2)
1 (Au(n)) 6= 0.
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Introduction The main result

The main result

Consider a representation π : A → L(X ) on a vector space X .
A π-cocycle is a map c : A → X such that

∀x , y ∈ A c(xy) = π(x)c(y) + c(x)ε(y).

It is trivial if c(x) = π(x)ξ − ξε(x) for some ξ ∈ X and all x ∈ A .
H1(A ,X ) is the space of π-cocycles modulo trivial cocycles.

Theorem

For n ≥ 3 we have H1(Ao(n),H) = H1(Ao(n),M) = 0.

In particular β
(2)
1 (Ao(n)) = 0. On the other hand β

(2)
1 (Au(n)) 6= 0.
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Introduction The main result

The main result

Theorem

For n ≥ 3 we have H1(Ao(n),H) = H1(Ao(n),M) = 0.

In particular β
(2)
1 (Ao(n)) = 0. On the other hand β

(2)
1 (Au(n)) 6= 0.

Remarks:

Collins-Härtel-Thom: β
(2)
k (Ao(n)) = 0 for k ≥ 4,

β
(2)
k (Ao(n)) = β

(2)
4−k(Ao(n)), and Kyed: β

(2)
0 (Ao(n)) = 0.

Corollary : δ∗(Ao) ≤ 1, by [Connes-Shlyakhtenko].
δ(Ao) = δ∗(Ao) = 1 if M is embeddable into Rω.

History : Leuven 11/2008, ArXiv v1 05/2009, ArXiv v2 03/2010

Roland Vergnioux (Université de Caen) Path cocycles in quantum Cayley trees Wien, april 12th, 2011 5 / 16



Introduction The main result

The main result

Theorem

For n ≥ 3 we have H1(Ao(n),H) = H1(Ao(n),M) = 0.

In particular β
(2)
1 (Ao(n)) = 0. On the other hand β

(2)
1 (Au(n)) 6= 0.

Strategy (for Ao):

Show that one particular cocycle vanishes: the path cocycle
cg : A → Kg with values in the quantum Cayley tree

Prove that this cocycle is “sufficiently universal” and vanishes
“sufficiently strongly” (and use Property RD)
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Introduction The strategy

More on the strategy

Algebraic version
X

AcO 66

c

::tttttttttt

A⊗A
T

ddIIIIIIIIII

T = m − (id⊗ε) is the usual boundary map,
c0 = id− 1ε is “the” trivial cocycle on A .
Fix a cocycle c : A → X .
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Introduction The strategy

More on the strategy

Algebraic version
X

AcO 66

c

::tttttttttt

A⊗A
T

ddIIIIIIIIII

mc

OO

Fix a cocycle c : A → X .
Observe that the cocycle relation for c : A → X reads

π(x)c(y) = c((m − id⊗ε)(x⊗y)) = (c ◦ T )(x⊗y)

Define mc : A⊗A → X by putting mc(x⊗y) = π(x)c(y).
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Introduction The strategy

More on the strategy

Algebraic version
X

AcO 66

c

::tttttttttt

cg

$$III
III

III
I

A⊗A
T

ddIIIIIIIIII

mc

OO

Fix a cocycle c : A → X .
Define mc : A⊗A → X by putting mc(x⊗y) = π(x)c(y).
Assume we can “lift” c0 to a cocycle cg : A → A⊗A , ie T ◦ cg = c0.

We obtain c = mc ◦ cg .
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Introduction The strategy

More on the strategy

Algebraic version
X

AcO 66

c

::tttttttttt

cg

$$III
III

III
I

A⊗A
T

ddIIIIIIIIII

mc

OO

Fix a cocycle c : A → X .
Define mc : A⊗A → X by putting mc(x⊗y) = π(x)c(y).
Assume we can “lift” c0 to a cocycle cg : A → A⊗A , ie T ◦ cg = c0.

We obtain c = mc ◦ cg . Hence if cg is trivial with fixed vector ξg ∈ A⊗A ,
all cocycles c are trivial with fixed vector ξ = mc(ξg ).
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Introduction The strategy

More on the strategy

Hilbertian version
M

AcO 66

c

::uuuuuuuuuu

cg

$$IIIIIIIII

H⊗H1

T

ddIIIIIIIII

mc

OO

Fix a cocycle c : A → M.
Define mc : H⊗H1 → X by putting mc(x⊗y) = π(x)c(y).
Assume we can “lift” c0 to a cocycle cg : A → H⊗H1, ie T ◦ cg = c0.

We obtain c = mc ◦ cg . Hence if cg is trivial with fixed vector ξg ∈ H⊗H1,
all cocycles c are trivial with fixed vector ξ = mc(ξg ).

With H1 ⊂ H finite-dimensional...
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Introduction The strategy

More on the strategy

The correct version
M

AcO 66

c

::uuuuuuuuuu

cg

$$IIIIIIIII

H⊗H1

T

ddIIIIIIIII

mc

OO

Fix a cocycle c : A → M.
Define mc : H⊗H1 → X by putting mc(x⊗y) = π(x)c(y).
Assume we can “lift” c0 to a cocycle cg : A → K ′

g , ie T ◦ cg = c0.

We obtain c = mc ◦ cg . Hence if cg is trivial with fixed vector ξg ∈ M⊗H1,
all cocycles c are trivial with fixed vector ξ = mc(ξg ).

With K ′
g ⊂ (A⊗A1)⊕KerT ...
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Quantum Cayley trees The classical picture

The classical picture
In the case of the free group Fn = 〈S〉, consider:

the Cayley graph of (Fn, S),

the `2-space Kg of antisymmetric edges,

for w ∈ Fn, the sum cg (w) ∈ Kg of edges
along the path from e to w : “path cocycle”

e

w
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Quantum Cayley trees The classical picture

The classical picture
In the case of the free group Fn = 〈S〉, consider:

the Cayley graph of (Fn, S),

the `2-space Kg of antisymmetric edges,

for w ∈ Fn, the sum cg (w) ∈ Kg of edges
along the path from e to w : “path cocycle”

e

w

This cocycle is non-trivial, even proper =⇒ a-T-menability.
In the case of Ao(n), it will be bounded!
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Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph

Fix the following data:

a discrete group G ,

a finite subset S ⊂ G such that S−1 = S , e /∈ S .

The Cayley graph associated with (G , S) is given by:

the set of vertices G ,

the set of edges G × S ,

the target map t : (α, γ)→ αγ,

the reversing map θ(α, γ) = (αγ, γ−1).
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Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph

Fix the following data:

a discrete group G ,

a finite subset S ⊂ G such that S−1 = S , e /∈ S .

The Hilbertian Cayley graph associated with (G , S) is given by:

the set of vertices G ,

the set of edges G × S ,

the target map t : (α, γ)→ αγ,

the reversing map θ(α, γ) = (αγ, γ−1).

Roland Vergnioux (Université de Caen) Path cocycles in quantum Cayley trees Wien, april 12th, 2011 9 / 16



Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph

Fix the following data:

a discrete group G ,

a finite subset S ⊂ G such that S−1 = S , e /∈ S .

The Hilbertian Cayley graph associated with (G , S) is given by:

the space of vertices H = `2(G ),

the set of edges G × S ,

the target map t : (α, γ)→ αγ,
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Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph

Fix the following data:

a discrete group G ,

a finite subset S ⊂ G such that S−1 = S , e /∈ S .

The Hilbertian Cayley graph associated with (G , S) is given by:

the space of vertices H = `2(G ),

the space of edges K = H⊗H1, where H1 = `2(S),

the target map t : (α, γ)→ αγ,

the reversing map θ(α, γ) = (αγ, γ−1).
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Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph

Fix the following data:

a discrete group G ,

a finite subset S ⊂ G such that S−1 = S , e /∈ S .

The Hilbertian Cayley graph associated with (G , S) is given by:

the space of vertices H = `2(G ),

the space of edges K = H⊗H1, where H1 = `2(S),

the target operator T : δα⊗δβ 7→ δαβ,

the reversing map θ(α, γ) = (αγ, γ−1).
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Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph

Fix the following data:

a discrete group G ,

a finite subset S ⊂ G such that S−1 = S , e /∈ S .

The Hilbertian Cayley graph associated with (G , S) is given by:

the space of vertices H = `2(G ),

the space of edges K = H⊗H1, where H1 = `2(S),

the target operator T : δα⊗δβ 7→ δαβ,

the reversing operator Θ : δα⊗δγ 7→ δαγ⊗δγ−1 .
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Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph

Fix the following data:

a discrete group G ,

a finite subset S ⊂ G such that S−1 = S , e /∈ S .

The Hilbertian Cayley graph associated with (G , S) is given by:

the space of vertices H = `2(G ),

the space of edges K = H⊗H1, where H1 = `2(S),

the target operator T : δα⊗δβ 7→ δαβ,

the reversing operator Θ : δα⊗δγ 7→ δαγ⊗δγ−1 .

C ∗red(G ) acts on H and on the first factor of H⊗p1H.
T and Θ are intertwining operators.
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The quantum Cayley graph

Fix the following data:
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Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph

Fix the following data:

a discrete quantum group,

a finite subset S ⊂ IrrC such that S̄ = S and ε̂ /∈ S .

The Hilbertian Cayley graph associated with (G , S) is given by:

the space of vertices H = `2(G ),

the space of edges K = H⊗H1, where H1 = `2(S),

the target operator T : δα⊗δβ 7→ δαβ,

the reversing operator Θ : δα⊗δγ 7→ δαγ⊗δγ−1 .

C ∗red(G ) acts on H and on the first factor of H⊗p1H.
T and Θ are intertwining operators.
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Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph

Fix the following data:

a discrete quantum group,

a finite subset S ⊂ IrrC such that S̄ = S and ε̂ /∈ S .

The quantum Cayley graph associated with (C ,S) is given by:

the space of vertices H,

the space of edges K = H⊗H1, where H1 = pSH,

the target operator T : δα⊗δβ 7→ δαβ,

the reversing operator Θ : δα⊗δγ 7→ δαγ⊗δγ−1 .

C ∗red(G ) acts on H and on the first factor of H⊗p1H.
T and Θ are intertwining operators.
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Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph

Fix the following data:

a discrete quantum group,

a finite subset S ⊂ IrrC such that S̄ = S and ε̂ /∈ S .

The quantum Cayley graph associated with (C ,S) is given by:

the space of vertices H,

the space of edges K = H⊗H1, where H1 = pSH,

the target operator T = m : K → H,

the reversing operator Θ = · · · , such that TΘ = id⊗ε.
C ∗red(G ) acts on H and on the first factor of H⊗p1H.
T and Θ are intertwining operators.
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Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph

Fix the following data:

a discrete quantum group,

a finite subset S ⊂ IrrC such that S̄ = S and ε̂ /∈ S .

The quantum Cayley graph associated with (C ,S) is given by:

the space of vertices H,

the space of edges K = H⊗H1, where H1 = pSH,

the target operator T = m : K → H,

the reversing operator Θ = · · · , such that TΘ = id⊗ε.
Ared acts on H and on the first factor of H⊗p1H.
T and Θ are intertwining operators.

Roland Vergnioux (Université de Caen) Path cocycles in quantum Cayley trees Wien, april 12th, 2011 9 / 16



Quantum Cayley trees Quantum Cayley graphs

Classical subgraphs

Quasi-classical subgraph Q0K ⊂ K : maximal subspace on which Θ2 = id.
Classical subgraph q0K ⊂ Q0K : fixed points for the adjoint repr. of Â.

q0K , Q0K are not stable under the action of A !

When A = CG , q0K = Q0K = K .
When A = Ao(n), q0K = Q0K 6= K .
When A = Au(n), q0K 6= Q0K 6= K .
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Quantum Cayley trees Quantum Cayley graphs

Classical subgraphs

Quasi-classical subgraph Q0K ⊂ K : maximal subspace on which Θ2 = id.
Classical subgraph q0K ⊂ Q0K : fixed points for the adjoint repr. of Â.

Case of Au(n) : q0K ⊂ Q0K ⊂ K .

edge α in the “real” graph I normed vector ξα ∈ q0K

vertex v in the “real” graph I normed vector ζv ∈ q0H

operators T , Θ induced by the classical operations

but T has weights...
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Quantum Cayley trees Quantum Cayley graphs

Classical subgraphs

Quasi-classical subgraph Q0K ⊂ K : maximal subspace on which Θ2 = id.
Classical subgraph q0K ⊂ Q0K : fixed points for the adjoint repr. of Â.

Case of Au(n) : q0K ⊂ Q0K ⊂ K .

Why this picture ?

vertices v are irreducible corepresentations

edges come from fusion rules v⊗u =
⊕

v ′

weights depend on dimensions of corepresentations
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Quantum Cayley trees Quantum path cocycles

Quantum path cocycles

We look for cocycles with values in the space of geometric, or
antisymmetric, edges Kg = Ker(Θ + id).
Recall that T = m = (id⊗ε)Θ, so that m − id⊗ε = 2T on Kg .

Definition

A path cocycle is a cocycle cg : A → Kg such that T ◦ cg = c0.

Example: in the Cayley tree of Fn, denote by cg (w) ∈ Kg the sum of the
antisymmetric edges on the path from the origin to w .

e

w

T
+1−1

e

−1 +1

w+1

−1
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Quantum Cayley trees Quantum path cocycles

Some general results

We consider a free product of Ao ’s and Au’s with n ≥ 3.
We denote K ′

g the orthogonal projection of A⊗A onto Kg .

Proposition

If T is injective on K ′
g , then there exists a unique path cocycle

cg : A → K ′
g .

In the case of Fn we have K ′
g = Kg ∩ (A⊗A ) and T is injective only on

this dense subspace. On the “purely quantum part” of our quantum trees
we have the much stronger property:

Theorem

T is injective with closed range on (1− Q0)Kg .
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Quantum Cayley trees Quantum path cocycles

The orthogonal case

Proposition

In the case of Ao(Q), with Q ∈ GL(n,C), QQ̄ ∈ CIn, n ≥ 3, the target
operator T : Kg → H is invertible. As a result there exists a unique path
cocycle cg : A → Kg , and it is trivial.

The main reason is that q0Kg = Q0Kg comes from the half-line:

(0,1) (1,2) (2,3) (3,4) (4,5) (5,6)

We can even compute the fixed vector ξg = T−1ξ0 for cg :

ξg =
∑
n≥0

ξ(αn,αn+1) − ξ(αn+1,αn)√
dimq αn dimq αn+1 dimq α1

.

By property RD it lies in M⊗H1. =⇒ β
(2)
1 (Ao(n)) = 0 �
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Quantum Cayley trees Quantum path cocycles

The unitary case

The quasiclassical subgraph is a union of trees ⇒ T injective on K ′
g .

Hence we have a unique path cocycle cg : A → K ′
g .

Let γ ∈ Mn⊗A be the fundamental corepresentation of Au(n).
We consider αk = γk and βk = γγ̄γ · · · .

Proposition

We have ‖(id⊗cg )(αk)‖ ≥ C
√
k and ‖(id⊗cg )(βk)‖ ≤ D for all k and

constants C , D > 0.

As a result cg is neither trivial (bounded) nor proper.

Au(n) non-amenable =⇒ β
(2)
1 (Au(n)) 6= 0 �
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Quantum Cayley trees Quantum path cocycles

The unitary case

Heuristically, the Proposition holds because there is no multiplicity above
the zigzag path (βk), and a lot of multiplicity above the straight line (αk):
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Quantum Cayley trees Quantum path cocycles

Work in progress

Is M = λ(Ao(n))′′ strongly solid ?

Is M = λ(Ao(n))′′ L2-rigid ?
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