BROWNIAN MOTION ON MATRICES
Philippe Biane
joint work with P. Bougerol and N. O'Connell
Vienna, 14/04/2011

UNIFORM DISTRIBUTION ON AN ORBIT

Let $(\lambda_1, \ldots, \lambda_N) \in \mathbf{R}^N$, the orbit

$$\mathcal{O}_{\lambda} = \{ UDU^* \mid U \in U(N) \}$$

of

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_N \end{pmatrix}$$

by conjugation has a unique probability distribution invariant under U(N).

HIZ FORMULA

The Fourier transform is given by Harish Chandra formula

$$\int_{U(N)} \exp(iTr(UDU^*A))dU = Z_N \frac{\det[(e^{i\lambda_j \mu_k})_{j,k}]}{V(\lambda)V(\mu)}$$

where μ_j are the eigenvalues of A and $V(\lambda)$ is the Vandermonde

$$V(\lambda) = \prod_{j < k} (\lambda_k - \lambda_j)$$

The Fourier transform is determined by its values on diagonal matrices *A*.

Remark: the formula is given by stationnary phase method.

DUISTERMAAT-HECKMAN MEASURE

For $A = diag(a_1, \ldots, a_N)$

$$F(a_1,...,a_N) = \int_{U(N)} \exp(iTr(UDU^*A))dU$$

=
$$\int_{U(N)} \exp(i\sum_j a_j(UDU^*)_{jj})dU$$

is the Fourier transform of the distribution of

$$((UDU^*)_{11},\ldots,(UDU^*)_{NN})$$

This measure on \mathbf{R}^N is supported by the hyperplane

$$\sum_{i} x_{i} = Tr(D)$$

It is the Duistermaat-Heckman measure.

SOME PROPERTIES OF DH MEASURE

The support of the Duistermaat-Heckman measure is the convex hull of the points $(\lambda_{\sigma(1)}, \dots, \lambda_{\sigma(N)})$, where $\sigma \in S_N$.

It has a piecewise polynomial density on this set.

It is the image by an affine map of Lebesgue measure on a convex polytope of dimension $\frac{N(N-1)}{2}$.

This property can be established by symplectic geometry techniques (toric degeneration of Schubert varieties, convexity properties of moment mappings).

$$D=egin{pmatrix} \lambda & 0 \ 0 & -\lambda \end{pmatrix} \qquad \lambda > 0, ext{ the orbit is}$$

$$\begin{pmatrix} x & z \\ \bar{z} & -x \end{pmatrix}$$

such that $x^2+|z|^2=\lambda^2$. A sphere S^2 of radius λ . D-H measure is the projection of uniform measure on S^2 onto a diameter.

It is Lebesgue measure on $[-\lambda, \lambda]$, for $A = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}$

$$\int_{U(2)} \exp(\frac{i}{2} Tr(UDU^*A) dU = Z_2 \frac{\det \begin{pmatrix} e^{\frac{i}{2}\lambda a} & e^{-\frac{i}{2}\lambda a} \\ e^{-\frac{i}{2}\lambda a} & e^{\frac{i}{2}\lambda a} \end{pmatrix}}{i\lambda a}$$
$$= \frac{\sin(\lambda a)}{\lambda a} = \frac{1}{2\lambda} \int_{-\lambda}^{\lambda} e^{iax} dx$$

$$N=3$$

Take

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} \qquad \lambda_1 + \lambda_2 + \lambda_3 = 0$$

the measure is supported by a convex set.

Density is piecewise polynomial with degree

$$\frac{(\mathit{N}-1)(\mathit{N}-2)}{2}$$

degree = 1 for N = 3

This measure is the image by an affine map affine of Lebesgue measure on a convex polytope

BROWNIAN INTERPRETATION OF DUISTERMAAT-HECKMAN MEASURE

 $B = (B_{ij}(t))_{1 \le i,j \le N} \ U(N)$ -invariant brownian motion on $N \times N$ hermitian matrices

Duistermaat-Heckmann measure is the conditional distribution of $(B_{11}(t), \ldots, B_{NN}(t))$ knowing that B(t) has spectrum $(\lambda_1, \ldots, \lambda_N)$.

MOTION OF EIGENVALUES

Let $B=(B_{ij}(t))_{1\leq i,j\leq N}$ Brownian motion in hermitian matrices The eigenvalues $\lambda_1(t)\geq \lambda_2(t)\geq \ldots \geq \lambda_N(t)$ follow a diffusion process in the cone $C=\{x_1\geq x_2\geq \ldots \geq x_N\}$. The Laplace operator on the cone with Dirichlet boundary

The Laplace operator on the cone with Dirichlet boundary conditions on C has a unique positive harmonic function

$$h(x) = \prod_{j < k} (x_k - x_j)$$

Brownian motion conditionned to stay in the cone has infinitesimal generator

$$\frac{1}{2h}\Delta h$$

and semigroup

$$q_t(x,y) = \frac{h(y)}{h(x)} \sum_{\sigma \in S_t} \varepsilon(\sigma) \frac{e^{-\frac{|x-\sigma(y)|^2}{2t}}}{(2\pi t)^{N/2}}$$

PITMAN TRANSFORM

$$f: [0, t] \to \mathbf{R}$$
 continuous,
 $f(0) = 0$, $Pf(s) = f(s) - 2\inf_{0 \le u \le s} f(u)$

PITMAN THEOREM

 $(B_t)_{t>0}$ = brownian motion, then

$$PB(t) = B_t - 2\inf_{0 \le s \le t} B_s$$

is a Bessel3 process= the norm of a three dimensional Brownian motion.

GENERALIZED PITMAN TRANSFORM

V= euclidian space, $a\in V$, $\langle a,a\rangle=1$. Pitman transformation in the direction a is:

$$P_a f(t) = f(t) - 2 \inf_{0 \le s \le t} \langle f(s), a \rangle a$$

$$P_aP_af=P_af$$
.

BRAID RELATIONS

Let $a,b \in V$, of norm 1, $\langle a,b \rangle = -\cos\theta$. If $n\theta \leq \pi$ then

(n terms)
$$P_a P_b P_a \dots f(t) = f(t) -$$

$$2\inf_{t\geq s_1\geq ...\geq s_n\geq 0} \left[\frac{\sin\theta}{\sin\theta} \langle f(s_1),a\rangle + \frac{\sin2\theta}{\sin\theta} \langle f(s_2),b\rangle + \frac{\sin3\theta}{\sin\theta} \langle f(s_3),a\rangle + ...\right]$$

$$-2\inf\nolimits_{t\geq s_1\geq ...\geq s_{n-1}\geq 0}[\tfrac{\sin\theta}{\sin\theta}\langle f(s_1),b\rangle + \tfrac{\sin2\theta}{\sin\theta}\langle f(s_2),a\rangle + \tfrac{\sin3\theta}{\sin\theta}\langle f(s_3),b\rangle +$$

If $\theta = \pi/n$ then

$$P_a P_b P_a \dots = P_b P_a P_b \dots$$
 (*n* termes)

(G,S) Coxeter group. G is generated by hyperplane reflexion $s_i \in S$, such that

$$s_i s_j s_i \ldots = s_j s_i s_j \ldots$$

with n_{ij} factors in each term Chose a fundamental domain for G=a convex cone intersection of half-spaces $C=\cap_{i\in S}\{\langle a_i,x\rangle\geq 0\}$ where a_i is orthogonal to H_i , the hyperplane of s_i .

THE SYMMETRIC GROUP

 S_n acts on \mathbb{R}^n by permutation of coordinates. $s_i: x_i \to x_{i+1}$ satisfy

$$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}; \quad s_i s_j = s_j s_i, |i-j| > 1$$

 $(1,1,1,\ldots,1)$ is invariant as well as its orthogonal $\sum_i x_i = 0$. $x_1 > x_2 > \ldots > x_n$ is a fundamental domain.

Example: n = 3

GENERALIZED PITMAN OPERATORS

Because of the braid relations, for every $w \in G$ one can define a Pitman operator. If

$$w = s_{i_1} \dots s_{i_k}$$

is a reduced decomposition then

$$P_w = P_{s_{i_1}} P_{s_{i_2}} \dots P_{s_{i_k}}$$

depends only on w.

Let $w_0 \in G$ be the longest element.

EXAMPLE: if $G = S_N$ then $w_0(i) = N + 1 - i$.

For N = 3 one has $w_0 = s_1 s_2 s_1 = s_2 s_1 s_2$.

Proposition

For all f, $P_{w_0}f$ takes values in the fundamental domain, the cone C.

GENERALIZED PITMAN THEOREM

Theorem 1. If B(t) is a Brownian motion in V then $P_{w_0}B$ is a Brownian motion conditioned to stay in C.

2. The conditional distribution of B(t) knowing $P_{w_0}B(s)$; $s \le t$ is the Duistermaat-Heckman measure on the convex hull of $g(P_{w_0}B(t))$; $g \in G$.

Let $w_0 = s_{i_1} \dots s_{i_n}$ a reduced decomposition $w_k = s_{i_{k+1}} \dots s_{i_n}$ then

$$P_{w_{k-1}}B(t) = P_{w_k}B(t) - 2\inf\langle a_{i_{k+1}}, P_{w_k}B(s)\rangle a_{i_{k+1}}$$

Let $x_k = -2\inf\langle a_{i_{k+1}}, PB_{w_k}(s)\rangle$ then

$$P_{w_0}B(t) = B(t) + \sum_k x_k a_{i_{k+1}}$$

Theorem The conditional distribution of (x_1, \ldots, x_n) knowing $(P_{w_0}B(s); s \leq t)$, is Lebesgue on a certain convex polytope. The Duistermaat-Heckman measure is the image by

$$(x_1,\ldots,x_n)\mapsto P_{w_0}B(t)-\sum_k x_ka_{i_{k+1}}$$