The norm of polynomials in large random matrices

Camille Mâle, École Normale Supérieure de Lyon, Ph.D. Student under the direction of Alice Guionnet.

with a significant contribution by Dimitri Shlyakhtenko.

ESI program Bialgebras in Free Probability, 11-21 April 2011.

A theorem of "strong asymptotic freeness"

The Gaussian Unitary Ensemble (GUE)

Definition

An $N \times N$ random matrix $X^{(N)}$ is a GUE matrix if $X^{(N)} = X^{(N)*}$ with entries $X^{(N)} = (X_{n,m})_{1 \leqslant n,m \leqslant N}$, where

$$\left((X_{n,n})_{1\leqslant n\leqslant N},(\sqrt{2}\mathrm{Re}\ (X_{n,m}),\sqrt{2}\mathrm{Im}\ (X_{n,m})\)_{1\leqslant n< m\leqslant N}\right)$$

is a centered Gaussian vector with covariance matrix $\frac{1}{N}\mathbf{1}_{N^2}$.

The Gaussian Unitary Ensemble (GUE)

Definition

An $N \times N$ random matrix $X^{(N)}$ is a GUE matrix if $X^{(N)} = X^{(N)*}$ with entries $X^{(N)} = (X_{n,m})_{1 \leqslant n,m \leqslant N}$, where

$$\left((X_{n,n})_{1\leqslant n\leqslant N},(\sqrt{2}\mathrm{Re}\ (X_{n,m}),\sqrt{2}\mathrm{Im}\ (X_{n,m})\)_{1\leqslant n< m\leqslant N}\right)$$

is a centered Gaussian vector with covariance matrix $\frac{1}{N}\mathbf{1}_{N^2}$.

Density

$$\frac{1}{Z_N} \exp\left(-\frac{1}{2N} \operatorname{Tr} X^2\right) \prod_{i \leq j} d\operatorname{Re} X_{i,j} \prod_{i < j} d\operatorname{Im} X_{i,j}.$$

 \Rightarrow standard Gaussian measure on $\left(\mathrm{M}_{N}(\mathbb{C})_{\mathit{Herm}}, \langle A, B \rangle = \frac{1}{N}\mathrm{Tr}\,\left[AB\right]\right)$.

The semicircle distribution

Definition

A non commutative random variable x in a *-probability space $(A, .*, \tau)$ has a semicircle distribution of $x = x^*$ and for any polynomial P,

$$\tau[P(x)] = \int P d\sigma \text{ with } d\sigma(x) = \frac{1}{2\pi} \sqrt{4 - x^2} \mathbf{1}_{|x| < 2} dx.$$

The semicircle distribution

Definition

A non commutative random variable x in a *-probability space $(A, .*, \tau)$ has a semicircle distribution of $x = x^*$ and for any polynomial P,

$$\tau[P(x)] = \int P d\sigma \text{ with } d\sigma(x) = \frac{1}{2\pi} \sqrt{4 - x^2} \mathbf{1}_{|x| < 2} dx.$$

Theorem: Wigner (58), Arnold (67)

if $X_N \rightsquigarrow \mathsf{GUE}$, then almost surely, for any polynomial P,

$$\frac{1}{N} \mathrm{Tr} \big[P(X_N) \big] = \frac{1}{N} \sum_{i=1}^{N} P \Big(\lambda_i(X_N) \Big) \underset{N \to \infty}{\longrightarrow} \int P \mathrm{d} \sigma = \tau \big[P(x) \big].$$

Voiculescu's asymptotic freeness theorem (1/2)

Consider in the *-probability space $\left(\mathrm{M}_{\textit{N}}(\mathbb{C}),.^*, au_{\textit{N}}:=\frac{1}{\textit{N}}\mathrm{Tr}\right)$

- $\mathbf{X}_N = (X_1^{(N)}, \dots, X_p^{(N)})$ independent $N \times N$ GUE matrices,
- $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_q^{(N)}) \ N \times N$ matrices, independent of \mathbf{X}_N .

Voiculescu's asymptotic freeness theorem (1/2)

Consider in the *-probability space $\left(\mathrm{M}_{\textit{N}}(\mathbb{C}),.^*, au_{\textit{N}}:=\frac{1}{\textit{N}}\mathrm{Tr}\right)$

- $\mathbf{X}_N = (X_1^{(N)}, \dots, X_p^{(N)})$ independent $N \times N$ GUE matrices,
- $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_q^{(N)}) \ N \times N$ matrices, independent of \mathbf{X}_N .

Consider in a *-probability space $(\mathcal{A}, .*, \tau)$

- $\mathbf{x} = (x_1, \dots, x_p)$ free semicircular random variables,
- $\mathbf{y} = (y_1, \dots, y_q)$ free from \mathbf{x} .

Voiculescu's asymptotic freeness theorem (2/2)

Theorem: Voiculescu (91), Thorbjørnsen (99), Hiai and Petz (99)

Assume

• Almost surely, $\mathbf{Y}_N \xrightarrow{\mathcal{L}^{n.c.}} \mathbf{y}$ when $N \to \infty$ i.e. for every non commutative polynomial P,

$$\tau_N[P(\mathbf{Y}_N, \mathbf{Y}_N^*)] \xrightarrow[N \to \infty]{} \tau[P(\mathbf{y}, \mathbf{y}^*)],$$

• Almost surely, for any $j=1,\ldots,q$, one has $\limsup_{N\to\infty}\|Y_j^{(N)}\|<\infty$.

Then almost surely $(\mathbf{X}_N, \mathbf{Y}_N) \xrightarrow{\mathcal{L}^{n.c.}} (\mathbf{x}, \mathbf{y})$ i.e. for every non commutative polynomial P,

$$\tau_N[P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*)] \xrightarrow[N \to \infty]{} \tau[P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*)].$$

\mathcal{C}^* -Probability spaces

Definition

A \mathcal{C}^* -probability space $(\mathcal{A}, .^*, \tau, \|\cdot\|)$ consists of a *-probability space $(\mathcal{A}, .^*, \tau)$ and a norm $\|\cdot\|$ such that $(\mathcal{A}, .^*, \|\cdot\|)$ is a \mathcal{C}^* -algebra.

\mathcal{C}^* -Probability spaces

Definition

A \mathcal{C}^* -probability space $(\mathcal{A}, .^*, \tau, \|\cdot\|)$ consists of a *-probability space $(\mathcal{A}, .^*, \tau)$ and a norm $\|\cdot\|$ such that $(\mathcal{A}, .^*, \|\cdot\|)$ is a \mathcal{C}^* -algebra.

In $(M_N(\mathbb{C}), .^*, \tau_N := \frac{1}{N} \mathrm{Tr})$ we consider the operator norm:

$$||A|| = \sqrt{\rho(A^*A)} \stackrel{A=A^*}{=} \rho(A).$$

\mathcal{C}^* -Probability spaces

Definition

A \mathcal{C}^* -probability space $(\mathcal{A}, .^*, \tau, \|\cdot\|)$ consists of a *-probability space $(\mathcal{A}, .^*, \tau)$ and a norm $\|\cdot\|$ such that $(\mathcal{A}, .^*, \|\cdot\|)$ is a \mathcal{C}^* -algebra.

In $(M_N(\mathbb{C}), .^*, \tau_N := \frac{1}{N} \mathrm{Tr})$ we consider the operator norm:

$$||A|| = \sqrt{\rho(A^*A)} \stackrel{A=A^*}{=} \rho(A).$$

Proposition

If τ is faithful, i.e. $\tau[a^*a] = 0 \Rightarrow a = 0$, then

$$||a|| = \lim_{k \to \infty} \left(\tau \left[(a^*a)^k \right] \right)^{\frac{1}{2k}}.$$

A strong asymptotic freeness theorem (1/2)

Consider in the \mathcal{C}^* -probability space $(\mathrm{M}_{\mathcal{N}}(\mathbb{C}),.^*, au_{\mathcal{N}},\|\cdot\|)$

- $\mathbf{X}_N = (X_1^{(N)}, \dots, X_p^{(N)})$ independent $N \times N$ GUE matrices,
- $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_q^{(N)}) \ N \times N$ matrices, independent of \mathbf{X}_N .

Consider in a \mathcal{C}^* -probability space $(\mathcal{A}, .^*, \tau, \|\cdot\|)$ with **faithful** trace

- $\mathbf{x} = (x_1, \dots, x_p)$ free semicircular system,
- $\mathbf{y} = (y_1, \dots, y_q)$ free from \mathbf{x} .

A strong asymptotic freeness theorem (2/2)

Theorem: M. (11), preprint

Assume: Almost surely, for every non commutative polynomial P,

$$\begin{array}{ccc} \tau_{\mathcal{N}}\big[P(\mathbf{Y}_{\mathcal{N}},\mathbf{Y}_{\mathcal{N}}^*)\big] & \underset{\mathcal{N}\to\infty}{\longrightarrow} & \tau[P(\mathbf{y},\mathbf{y}^*)], \\ \big\|P(\mathbf{Y}_{\mathcal{N}},\mathbf{Y}_{\mathcal{N}}^*)\big\| & \underset{\mathcal{N}\to\infty}{\longrightarrow} & \|P(\mathbf{y},\mathbf{y}^*)\|. \end{array}$$

Then, almost surely, for every non commutative polynomial P,

$$\tau_{N} \big[P(\mathbf{X}_{N}, \mathbf{Y}_{N}, \mathbf{Y}_{N}^{*}) \big] \quad \underset{N \to \infty}{\longrightarrow} \quad \tau[P(\mathbf{x}, \mathbf{y}, \mathbf{y}^{*})],$$

$$\| P(\mathbf{X}_{N}, \mathbf{Y}_{N}, \mathbf{Y}_{N}^{*}) \| \quad \underset{N \to \infty}{\longrightarrow} \quad \| P(\mathbf{x}, \mathbf{y}, \mathbf{y}^{*}) \|.$$

Other results on strong asymptotic freeness

Cases where \mathbf{Y}_N are zeros.

- Haagerup and Thorbjørnsen (05): pioneering works,
- Schultz (05): X_N → GOE, GSE,
- Capitaine and Donati-Martin (07): $\mathbf{X}_N \leadsto \text{Wigner ensemble with}$ symmetric law of entries and a concentration assumption; $\mathbf{X}_N \leadsto \text{Wishart}$,
- Anderson (24 Mar 2011 on arXiv): X_N → Wigner ensemble with finite fourth moment.

The spectrum of large hermitian matrices

Corollary

Let $H_N = P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*)$ a Hermitian matrix. Denote its empirical eigenvalue distribution

$$\mathcal{L}_{H_N} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i(H_N)}.$$

Asymptotic freeness: Almost surely, $\mathcal{L}_{H_N} \underset{N \to \infty}{\longrightarrow} \mathcal{L}_h$ the distribution of the self adjoint non commutative random variable $h = P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*)$.

Strong asymptotic freeness: Almost surely, for every $\varepsilon > 0$, there exists $N_0 \ge 1$ such that for every $N \ge N_0$,

$$\operatorname{Sp}(H_N) \subset \operatorname{Supp}(\mu) + (-\varepsilon, \varepsilon).$$

Idea of the proof

The main steps

Haagerup and Thorbjørnsen's method:

- A linearization trick,
- Uniform control of matrix-valued Stieltjes transforms,
- Oncentration argument.

The main steps

Haagerup and Thorbjørnsen's method:

- A linearization trick,
- Uniform control of matrix-valued Stieltjes transforms,
- 3 Concentration argument.

In this proof

- A linearization trick, unchanged,
- Uniform control of matrix-valued Stieltjes transforms, based on an "asymptotic subordination property",
- An intermediate inclusion of spectrum, by Shlyakhtenko,
- Concentration argument, no significant changes.

An equivalent formulation

A linearization trick

In order to show: Almost surely, for every polynomial P one has $||P(Y \cup Y \cup Y^*)||$

$$||P(\mathbf{X}_N, \mathbf{Y}_N, \mathbf{Y}_N^*)|| \underset{N \to \infty}{\longrightarrow} ||P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*)||,$$

it is enough to show: Almost surely, for every self adjoint degree one polynomial L with coefficient in $\mathrm{M}_k(\mathbb{C})$, for any $\varepsilon>0$, there exists $N_0\geq 1$ such that for all $N\geq N_0$, one has

$$\mathrm{Sp}\big(\ L(\mathbf{X}_N,\mathbf{Y}_N,\mathbf{Y}_N^*)\ \big)\subset \mathrm{Sp}\big(\ L(\mathbf{x},\mathbf{y},\mathbf{y}^*)\ \big)+(-\varepsilon,\varepsilon).$$

Based on operator spaces techniques (Arveson's theorem and dilation of operators).

Matricial Stieltjes transforms and \mathcal{R} -transforms

Let $(A, .^*, \tau, \|\cdot\|)$ be a \mathcal{C}^* -probability space. Consider z in $\mathrm{M}_k(\mathbb{C}) \otimes \mathcal{A}$.

Definitions

• The $M_k(\mathbb{C})$ -valued Stieltjes transform of z is

$$\begin{array}{cccc} G_z: & \mathrm{M}_k(\mathbb{C})^+ & \to & \mathrm{M}_k(\mathbb{C}) \\ & & \Lambda & \mapsto & (\mathrm{id}_k \otimes \tau_N) \Big[\big(\Lambda \otimes \mathbf{1} - z \big)^{-1} \Big]. \end{array}$$

• The amalgamated \mathcal{R} -transform over $\mathrm{M}_k(\mathbb{C})$ of z is

$$\mathcal{R}_z: U \to \mathrm{M}_k(\mathbb{C})$$

 $\Lambda \mapsto G_z^{(-1)}(\Lambda) - \Lambda^{-1}.$

The subordination property

Let $\mathbf{x}=(x_1,\ldots,x_p)$ and $\mathbf{y}=(y_1,\ldots,y_q)$ be selfadjoint elements of $\mathcal A$ and let $\mathbf{a}=(a_1,\ldots,a_p)$ and $\mathbf{b}=(b_1,\ldots,b_q)$ be $k\times k$ Hermitian matrices. Define

$$s = \sum_{j=1}^p a_j \otimes x_j, \quad t = \sum_{j=1}^q b_j \otimes y_j.$$

Proposition

If the families x and y are free, then one has

$$G_{s+t}(\Lambda) = G_t \Big(\Lambda - \mathcal{R}_s \big(G_{s+t}(\Lambda) \big) \Big).$$

If x_1, \ldots, x_p are free semicircular n.c.r.v. then we get

$$\mathcal{R}_s: \Lambda \mapsto \sum_{i=1}^p a_i \Lambda a_i.$$

Stability under analytic perturbations

If one has

$$G_{s+t}(\Lambda) = G_t \Big(\Lambda - \mathcal{R}_s \Big(G_{s+t}(\Lambda) \Big) \Big),$$

 $G(\Lambda) = G_t \Big(\Lambda - \mathcal{R}_s \Big(G(\Lambda) \Big) \Big) + \Theta(\Lambda),$

where Θ is an analytic perturbation, then we get

$$\|G(\Lambda) - G_{s+t}(\Lambda)\| \leqslant (1+c \|(\operatorname{Im} \Lambda)^{-1}\|^2) \|\Theta(\Lambda)\|.$$

An asymptotic subordination property

Let $\mathbf{X}_N = (X_1^{(N)}, \dots, X_p^{(N)})$ be independent GUE matrices, let $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_q^{(N)})$ be deterministic Hermitian matrices and let $\mathbf{a} = (a_1, \dots, a_p)$ and $\mathbf{b} = (b_1, \dots, b_q)$ be $k \times k$ Hermitian matrices. Define

$$S_N = \sum_{j=1}^p a_j \otimes X_j^{(N)}, \quad T_N = \sum_{j=1}^q b_j \otimes Y_j^{(N)}.$$

Proposition

One has

$$G_{S_N+T_N}(\Lambda) = G_{T_N}\Big(\Lambda - \mathcal{R}_s\big(\ G_{S_N+T_N}(\Lambda)\ \big)\ \Big) + \Theta_N(\Lambda),$$

with Θ_N an analytic perturbation.

A first try

Let $\mathbf{x} = (x_1, \dots, x_p)$ be free semicircular n.c.r.v. and $\mathbf{y} = (y_1, \dots, y_q)$ the limit in law of \mathbf{Y}_N .

$$G_{s+t}(\Lambda) = G_t \Big(\Lambda - \mathcal{R}_s \big(G_{s+t}(\Lambda) \big) \Big),$$

$$G_{S_N+T_N}(\Lambda) = G_{T_N} \Big(\Lambda - \mathcal{R}_s \big(G_{S_N+T_N}(\Lambda) \big) \Big) + \Theta_N(\Lambda).$$

- \Rightarrow we get an estimate of $\|G_{S_N+T_N}(\Lambda) G_{s+t}(\Lambda)\|$ only if we can control $\|G_{T_N}(\Lambda) G_t(\Lambda)\|$.
- \Rightarrow with the concentration machinery we get the Theorem, but with unsatisfactory assumptions on \mathbf{Y}_{N} ...

An intermediate space

Put ${\bf x}$ and ${\bf Y}_N$ in a same ${\cal C}^*$ -probability space, free from each other. Then

$$G_{s+T_N}(\Lambda) = G_{T_N} \Big(\Lambda - \mathcal{R}_s \Big(G_{s+T_N}(\Lambda) \Big) \Big),$$

$$G_{S_N+T_N}(\Lambda) = G_{T_N} \Big(\Lambda - \mathcal{R}_s \Big(G_{S_N+T_N}(\Lambda) \Big) \Big) + \Theta_N(\Lambda).$$

 \Rightarrow we get an estimate of $\|G_{S_N+T_N}(\Lambda)-G_{s+T_N}(\Lambda)\|$ without any additionnal assumption on \mathbf{Y}_N .

An theorem about norm convergence

Theorem: by Shlyakhtenko, in an appendix of M. (11)

Let $\mathbf{Y}_N = (Y_1^{(N)}, \dots, Y_q^{(N)})$ and $\mathbf{y} = (y_1, \dots, y_q)$ be n.c.r.v. in a \mathcal{C}^* -probability space with faithful trace. Let $\mathbf{x} = (x_1, \dots, x_q)$ be free semicircular n.c.r.v. free from \mathbf{Y}_N and \mathbf{Y} . Assume: for every non commutative polynomial P,

$$\begin{array}{ccc} \tau_{N}\big[P(\mathbf{Y}_{N},\mathbf{Y}_{N}^{*})\big] & \underset{N\to\infty}{\longrightarrow} & \tau[P(\mathbf{y},\mathbf{y}^{*})], \\ \big\|P(\mathbf{Y}_{N},\mathbf{Y}_{N}^{*})\big\| & \underset{N\to\infty}{\longrightarrow} & \|P(\mathbf{y},\mathbf{y}^{*})\|, \end{array}$$

Then for every non commutative polynomial P,

$$||P(\mathbf{x}, \mathbf{Y}_N, \mathbf{Y}_N^*)|| \underset{N \to \infty}{\longrightarrow} ||P(\mathbf{x}, \mathbf{y}, \mathbf{y}^*)||.$$

An intermediate inclusion of spectrum

We get: for every self adjoint degree one polynomial L with coefficient in $\mathrm{M}_k(\mathbb{C})$, for any $\varepsilon>0$, there exists $N_0\geq 1$ such that for all $N\geq N_0$, one has

$$\operatorname{Sp}(L(\mathbf{x},\mathbf{Y}_N,\mathbf{Y}_N^*)) \subset \operatorname{Sp}(L(\mathbf{x},\mathbf{y},\mathbf{y}^*)) + (-\varepsilon,\varepsilon).$$

 \Rightarrow Together with this estimate of $||G_{S_N+T_N}(\Lambda) - G_{s+T_N}(\Lambda)||$, the concentration machinery applies.

Thank you for your attention

