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@ Classical probability calculus
o Addition law
e Multiplication law
@ Random matrices with one dimensional spectra
o Addition law (Hermitian ensembles)
o Multiplication law (Unitary ensembles)
© Non-hermitian random matrices (two-dimensional spectra)
o Addition law
e Multiplication law

Q Summary
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Probability: Addition law

e Knowing independent p,(x;) and pp(xp), we want to infer
p(s), where s = x5 + xp
° = [ dxadxppa(xa)pp(x6)d(s — (Xa + xp)) =
f dXPa )Pb(s — x)
o Fourier transform f(k) = [ dke™p(x) =
e (k)" [ p(x)x"dk =302 (k)" m, unravels the

n 0 n! n=0 n!
convolution, f(k) = fa(k) - fp(k)
o r(k)=Inf(k)=>"2 I generates cumulants

n=1 nl

e Addition law r(k) = ray(k) + rp(k), i.e. ¢, = S

N

X

e Ex.: Gaussian pdf p(x) = f 7z = N(0,1) (only & #0)
Na(Ov 1) 2 Nb(oa 1) ( f)
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Probability: Multiplication law

e Knowing independent p,(xa) and pp(xp), we want to infer
p(r), where r = x5 - xp

o p(r) = [ dxadxopa(xa)ps(x6)d(r — xa - x6) = [ 5 pa(})Pe(x)

e Mellin transform m(t) = [;° % xtp(x) factorizes above
integral

e Muiltiplication law m(t) = m,(t) - mp(t)

@ Technical modification for negative random variables
m(t) = myq(t) + my_(t) + m_p.(t) + m__(t)

e Inverse Mellin transform p(r) = [ m(t)t~"dt yields the result

o Ex.: N,(0,1) ® Np(0,1) = Ko(x) (MacDonald function),

|im|X|*}0 KO(X) ~—In |X" llm\x\ﬁoo KO(X) ~ ﬁe_‘xl
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: Matrix-valued probability calculus (real eigenvalues)

o du(X) = P(X)dX = e NtrV(X)gx
o Key question: statistics of the spectra of X, e.g.
p(N) = 4 (tr5(A — X))

o du({X}) = Cue™ "=V T, L1; .
eigenvalues with each other (8 = 1(2) for
real(complex) matrices).

e Large N simplifications: theoretical (planar "graphs” dominate
in the guise of 't Hooft expansion), practical ( )

° Complex Green's function generates spectral moments My:
G(z) = <tr21N > > ko I)</,+1 where
My = § <ter> = [ p(A)AKdA

@ Analytic properties are crucial:
p(A) = =2 1imc0 SG(2)|sorrie
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RMT: Matrix-valued probability calculus (real eigenvalues)

@ What about spectral cumulants C,?
e R-transform R(z) =, Cezk1
o G(R(z2)+1)=zand R(G)+ ¢ =2z

z
@ Physicist " proof’: RMT is a QFT in 0 4 0 dimensions, hence
7 — f dXe—NtrV(X)

© 't Hooft double line notation for Wick expansion: Propagator
< XX >~ 1/N, each vertex brings N, each loop brings N

@ Only planar "Feynman graphs” survive N — oo limit

© We define 1P| "self energy” ¥(z) as G(z) = ﬁ(z)

© Self-energy gets contributions from renormalized propagators
1/z — G(z) and renormalized vertices Cy, so
¥(z) = > ,_; CkG(2)k"1 = R(G(z)) (Schwinger-Dyson
equation)
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R-transform: Addition law

e Knowing pa(\) and pg(A) for independent (free) RM
ensembles, we want to infer payg()), i.e. calculate
Gar8(2) = 3y [ dXadXsPa(Xa)Ps(X)tr o1 —xir s

e Non-commutative convolution, since [Xa, Xg] # 0

o Addition law: First, from the definition G(R(z) + 1) = z we
read the corresponding transforms Ra(z) and Rg(z). Second
we apply addition law Ray5(z) = Ra(z) + Rg(z). Third, we
invert functionally Rayg(z) to get the desired result.

@ For matrix analogue of the Gaussian distribution only G, # 0,
i.e. Rw(z) = Gz. For G, =1/4 Green's function reads
Gw(z) =2(z— V22— 1), 50 pw(A) = 21— X2 = W(0,1).
Wigner semicircle <> Gaussian.

o Ex.. Wx(0,1)@ Wg(0,1) = W(0,+/2), in analogy to the
classical case.
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S-transform: Multiplication law

e Knowing pa(A) and pg(A) for independent (free) RM
ensembles, we want to infer pa.g()), i.e. calculate
GA.B(Z) = %deAdXBPA(XA)PB(XB)tI‘m

@ In general, for hermitian matrices, (H; - H2)T #+ H; - Ha, so
spectra are complex.

o For unitary random matrices, (U; - Uo)' - Uy - Us = 1, spectra
on the unit circle A\ = e/, analytic methods applicable.

@ S-transform S(z)G(H2S(2)) =2

e Multiplication law: Sa.5(z) = Sa(z) - Sg(2).

@ S-transforms and R-transforms are related, alike Fourier and
Mellin transforms are related.

@ Alternative version for multiplication law
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S-transform - preliminary: relation to R-transform

S(z) = 1+7ZX(Z)- where x(zG(z) — 1) = %
If z=yG(y) — 1, then S(yG(y) —1) = . —r. Since

G(y)
G(y) = Zi)l:(y), we get S(G(y)X(y)) = ﬁ Since
Y(y) = R(G(y)), we arrive (after taking reciprocals of both
sides) at W = R(G(y)). Finally, changing variables

again z = G(y) we arrive at

Note that S transform can be defined only if R(0) # 0,
(non-vanishing first moment)

Last equation can be inverted: Let us define y = zR(z). Then

S(y) = RGS) R(R(R(y ))), where z is recursively eliminated

ad infinitum

e Mutually inverse maps z = yS(y) and y = zR(z)

Maciej A. Nowak Multiplication law



S-transform - diagrammatics

@ We consider 2N x 2N block matrices

ST TR g

Gii(w) Gio(w)
Go1(w)  Gao(w)

@ Block-trace definition trb2< é g > = ( trA trB )
1
N

o Note that Gag(z = w?) =

o We define G(w) = <

e Similarly, we define X(w) = <
G(w) = (wlz — T(w))™*
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S-transform - alternative formulation

@ From the flow of indices (Hi2 <> A, Ha1 <> B) we get
_ 0 Ra(G21(w))
Y(w)= < R (Gar(w)) 0 > where
G(w) = (wla — Z(w)) ™
Gui(w) Guao(w) \ _ 1
° ( Gor(w) Gon(w) ) =G(w) = (wl — X(w)) =
( w ~Ra(Ga(w)) >
—Rp(G22(w)) w
o Inverting matrix we get (w? = z2)
GAB(Z) _ 1 _ Gi1(w) _ 1

z—% pp(2) w

G12 = GagRA(G21), Go1 = GABR;(QH)

o Using Gag(z) = .

we get the multiplication law.
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Relation to "canonical’ form of S

Gap =g, Y12 = 8a, 921 = 8B
Algorithm: Three equations with three complex variables:

To unravel equations, we define y = gRag(g). Then

Rag(g) _ vy _ y

g6 = gRp(ga) = ERalgs) ~ Rales) ~ Ra(z(5))

A

o (i) -~ ) ()

But one has to assume R;(0) # 0 for i = A, B, AB

Taking reciprocal of the above equation we arrive at

Sag(y) = Sa(y) - Se(y)
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Non-hermitian case - electrostatic analogy (Dyson gas)

Analytic methods break down, since spectra are complex
p(z,2) = (32032 = ).
e Potential ®(z,z) =
lime_y0 IimN_mo <itr In[(z1y — X)(Z1y — XT) + 621N]>
2
e Poisson law 2 5795 8‘ = 7p(z,2), since 6 (z) = lim._o % (‘Z‘;TZ)Z

o Electric field G(z,2) = 22

o Gauss law 10;G(z,2) = p(z,2)

=\ . 1 z—Xxt
G(z,z)—llmeﬁollm,\/_,oo<—t T PSITE) e XT)+€2>

° G(z) = <Ntr z]_fo>

e Important in applications (dissipation, directed percolation,
lagged correlations..), interesting in mathematics
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Non-hermitian case - Remedy: tr InA =Indet A

_ - oyt 2 . Z].N—X iE].N
tr In[(z1y — X)(z1y — XT) 4+ €“1y] = Indet ( iely  zly X

@ Duplication trick
¢ A B\ [ trA trB
""lc b))~ \t&wCc uD

] X 0

1 1\ _ [ 911 Gi1
9(2) = w <trbZN‘X> B < G11 i1 )
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Benefits of the duplication trick

Self-energy ¥ is a 2 by 2 matrix G(Z) = 3=z

Analogue of R-transform exists R(G) + é =Z

Addition law holds Ra15(Z) = Ra(Z) + Re(2)

Upper-left corner of G, i.e. G11 = G(z,2), so %82911 = p(N\)
Condition G;7G7; = 0 provides the equation for the boundary
of eigenvalues

Ex.: W5(0,1) &/ - Wp(0,1) = Ginibre-Girko ensemble
(uniform distribution bounded by the circle |z| = 1/2)
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Hidden algebraic structure unveiled

@ Each generic 2 by 2 matrix @ which has appeared before has
z iw
the structure Q = < . 5 >

w
@ @ is a quaternion
, qo+iqs (g1 — iq2) >
e Q=qolr+io;qg; = . . .
dol2 iqi ( I(Ch + Iq2) qo — iq3
@ One can exploit the whole space of Q, instead of staying
infinitesimaly close (¢€) in transverse directions (1,2)

@ Algorithm how to embed Greens functions and R-transforms
in quaternion space for any hermitian H, any H; + iH>
, any unitary U , and
several other cases.

ib 0 ib
e Examples: Reue(Q) = Q, Re—¢ < 17) Ié ) = ( ib IO >
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Correspondence of the addition laws

Hermitian case Non-hermitian case

@ real spectra @ complex spectra

@ Green's function G(z) is @ Green's function G(Q) is a
complex quaternion

° G(R(z)+3) =2z ° G(R(Q) +¢) = Q

e Addition law e Addition law Ra.5(Q) =
Rat8(2) = Ra(z) + Rs(2) Ra(Q) + Rp(Q)

@ Analytic functions (cuts and @ Matrix-valued non-analytic
poles as singularities) functions

Maciej A. Nowak Multiplication law



Does nonhermitian S transform exist?

Despite doubts if such construction is possible at all, several recent
results on products of random matrices were suggesting the
possibility that such law may exist, e.g.:

@ Nonhermitian diffusion

Products of centered complex matrices

Time-lagged correlations

Additive laws for unitary ensembles

Multiplication for vanishing mean ensembles
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Multiplication law for non-hermitian random matrices

e Multiplication law reads :

o Ras(9as) =R5(0s) RE(Ga) where Ga = [GasRA(G5)]"
and Gg = [RE(QA)QA-B]R
where for generic Q we have QL = UQU' (QRF = UTQU) and
U=e%% with ¢ = Arg z.

@ Note that order matters, since matrices (quaternions) do not
commute.

@ Three (matrix-valued) equations for three quaternion
variables.

@ In the case when [G,R] = 0, addition law gets reduced to
S-transform by Voiculescu, i.e to the mutiplication law for
complex functions RA-B(GA-B) = RA(GB) . RB(GA) where
GA = GA~BRA(GB) and GB = RB(GA)GA-B
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Elements of the construction (1)

@ We have product of random matrices and spectrum is
complex, so we combine both duplication tricks:

0O A 0 O
B 0 0 O
°H=114 0 o &f
0 0 AT 0 AN x4N
Gui G12 Gi1 G153
| 921 G2 Go1 Gy 1 1
W = = = t . S—
° (W) Gn 91 911 91 N<rb4w®1*”>
G51 U3 G51 U3 /404

where W = diag(w, w, w, w)
o Similarly T(W) = R(G(W)) where G(W) = (W — Z(W)) !

are all 4 by 4 matrices
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Elements of the construction (I1)

0 Sua T3 O
Y BB 0 0 PPy
PPN 0 0 P

0 a4 Xz 0
@ Above eight elements can be grouped

Yaa Zaz \ _ [ Raa(Ge) Raz(Gs) \ _
( 27A 222 ) B ( Rza(GB) R;g(gs) ) =Ra(9s)

Yee Ygg |\ _ [ Res(9a) Rgp(9a) \ _
( 258 Zgg ) - < Res(9a) RZZ(QA) ) = Re(9a)

@ Matrices Ga and Gg are unknown (alike ga, gg)

_ [ Y12 gli) _<921 g2§>
Ga (gzz G51 Gs Gi1 912

@ Flow of indices yields ¥ =
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Elements of the construction (I11)

o Note that Gag(z,z) = Gum(Z) = g“( ) where M = AB. It

is possible iff
MM Zuf

Yy = ( MM ) —
XM Tmim

( 5 aa ﬁma) ‘ ( Y55 \/>233> _sisn

\/%ZZ‘A 4 V&res Tes

@ Recalling that ¥4 = Ra(Gg) and X4 = Ra(Gg) we have
Rm(9m) = [Ra(Gs)]" - [Re(Ga)]F

@ Tedious calculations allow to close the construction

Ga = [gl\/l . [RA(QB)]L] ' g = [[RB(QA)]R : QM} i
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Elements of the construction (1V)

@ Formally, one can define now two matrix-valued S-transforms
via equations

LEFT _ 1
(] S( )(y) - RL([S(LEFT)(y)y]R)

RIGHT _ 1
o S( )(y) - RR<[))S(R’GHT)()))]L)

o Multiplication law reads

[SI(VI;EFT) ([R(g)g]L)}R: [S(RIGHT ([QR( 1 )}L:
SE (GRm(9)) - SYET (Rm(9)9)
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Algorithm at work

© Write down known Ra(Gg) and Rg(Ga), where

T Al
Ga= (5 5 )mse=( 0 5 )

@ Modify Ra — RL, Rg — RE

Q@ Ry =RLRE

@ Write down consistency conditions (£ — Ry )GR = [Ra(Gs)]*
and Gg(Z — Ru) = [Re(Ga)l¥

@ Solve (4) for a, b, a’, b’ and read out Gy

Note that if A and B are identical free ensembles, pair (3) reduces
to one equation, since a=a’, b=b'.
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Example 1. GUE times GUE

© We ask for the spectrum of Hy - Hg, where both ensembles are free
(independent) GUE. Then for both ensembles

Ra(G) =Rge(G) =G, in analogy to R(z) = z.
) Rﬁ(@—( 2y >,R§(g>—< e bf)
/b\/% 3 iby/ a
Q@ Rum=RELRE
@ Consistency conditions provide matrix equation for a, b.
© Two solutions: a=b=0o0ra=0, |b2=1—ww=1—+2zz

@ Holomorphic solution G(z) = 1, nonholomorphic G(z,z) = \/g
they match on boundary |z| =1

Spectral density p(z,2z) = 10;G(2,2) = 5= ——

2 iyt on unit disc.
So Wx(0,1) @ Wg(0,1) is a "Halloween hat" law
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Example 1: Visualization

—1.0N=

Note qualitative similarity to N,(0,1) ® Np(0,1) = L Ko(x).
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Example 2: Shifted Ginibre-Girko Ensemble times shifted

Ginibre-Girko Ensemble

@ We ask for the spectrum of (14 Xa)(1 4+ Xg), where both
ensembles X4, Xg are free (independent) GGE, i.e. spectrum of
14 X is uniform unit disc centered at x =1,y = 0.

a ib 1 ib
°R1+X<ib §>_(:'b 1)
@ Algorithm yields the boundary and the spectral density

@ Boundary belongs to the family of parametric curves appearing in
non-hermitian diffusion, density involves the solution of biquadratic
equation

@ Boundary reads r = 1 4 2cos ¢, where z = re'?.

@ Curve known as Pascal limagon (after Etienne Pascal (1588-1651),
father of Blaise Pascal), but actually known already to Albrecht
Diirer (Underweysung der Messung, 1525)
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Limagon: visualization by Durer
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Limacon: visualization five centuries later...
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Limacon: numerical crosscheck of spectral desnity at y =0
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Challenges

@ Mathematical arguments why described construction is
possible

@ Geometric interpretation of the left and right rotation
(connection to SU(2)), Xt = UXUT, XR = UTXU, where

93 ¢

U=¢e'722.

@ Less academic examples
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H type of randomness H Addition law | Multiplication law H

Random variables
Random matrices (1-d)
Random matrices (2-d)
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" Quaternization” [Jarosz,Nowak;2004]

e For any hermitian H, knowing G(z) and R(z), we write down

_ 96G(9)—§Ga —G(a +
G(Q) = R(q)q - 1, Q

_a L] R(g
R(Q) = q9—q 1, q— Qf .
where g, g are elgenvalues of the quaternion Q. Note that
R(G(Q)+1/Q) =

@ In analogy to Gy(z) = %GH(%) and Ry = tRy(tz) for t real
we have now for complex t
Gix(Q) = Gx(T1Q)T ! and Rix(Q) = TRx(QT), where
T = diag(t, t)

@ Similar formulae for unitary ensembles [Jarosz, Goerlich;2005],

in particular for CUE we get
R a ib 0 DY
CVE\ ib 3

ibl_’/l_4|b‘2 0

2[b|?
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