Multiplication law and S-transform for non-hermitian random matrices

Maciej A. Nowak

(in collaboration with Z. Burda and R.A. Janik, math-ph/1104.2452)

Mark Kac Complex Systems Research Center, Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

ESI workshop on Bialgebras in Free Probability
April 15th, 2011, Wien

Outline

- Classical probability calculus
 - Addition law
 - Multiplication law
- 2 Random matrices with one dimensional spectra
 - Addition law (Hermitian ensembles)
 - Multiplication law (Unitary ensembles)
- Non-hermitian random matrices (two-dimensional spectra)
 - Addition law
 - Multiplication law
- Summary

Probability: Addition law

- Knowing independent $p_a(x_a)$ and $p_b(x_b)$, we want to infer p(s), where $s = x_a + x_b$
- $p(s) = \int dx_a dx_b p_a(x_a) p_b(x_b) \delta(s (x_a + x_b)) =$ $\int dx p_a(x) p_b(s - x)$
- Fourier transform $f(k) = \int dk e^{ikx} p(x) = \sum_{n=0}^{\infty} \frac{(ik)^n}{n!} \int p(x) x^n dk = \sum_{n=0}^{\infty} \frac{(ik)^n}{n!} m_n$ unravels the convolution, $f(k) = f_a(k) \cdot f_b(k)$
- $r(k) \equiv \ln f(k) = \sum_{n=1}^{\infty} \frac{(ik)^n}{n!} c_n$ generates cumulants
- Addition law $r(k) = r_a(k) + r_b(k)$, i.e. $c_n = c_n^{(a)} + c_n^{(b)}$
- Ex.: Gaussian pdf $p(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\equiv N(0,1)$ (only $c_2\neq 0$) $N_a(0,1)\oplus N_b(0,1)=N(0,\sqrt{2})$

Probability: Multiplication law

- Knowing independent $p_a(x_a)$ and $p_b(x_b)$, we want to infer p(r), where $r = x_a \cdot x_b$
- $p(r) = \int dx_a dx_b p_a(x_a) p_b(x_b) \delta(r x_a \cdot x_b) = \int \frac{dx}{x} p_a(\frac{r}{x}) p_b(x)$
- Mellin transform $m(t) = \int_0^\infty \frac{dx}{x} x^t p(x)$ factorizes above integral
- Multiplication law $m(t) = m_a(t) \cdot m_b(t)$
- Technical modification for negative random variables $m(t) = m_{++}(t) + m_{+-}(t) + m_{-+}(t) + m_{--}(t)$ [Epstein;1948]
- Inverse Mellin transform $p(r) = \int_{\Gamma} m(t) t^{-r} dt$ yields the result
- Ex.: $N_a(0,1)\otimes N_b(0,1)=\frac{1}{\pi}K_0(x)$ (MacDonald function), $\lim_{|x|\to 0}K_0(x)\sim -\ln|x|$, $\lim_{|x|\to \infty}K_0(x)\sim \sqrt{\frac{\pi}{2|x|}}e^{-|x|}$

RMT: Matrix-valued probability calculus (real eigenvalues)

- $d\mu(X) \equiv P(X)dX = e^{-N\operatorname{tr} V(X)}dX$
- Key question: statistics of the spectra of X, e.g. $\rho(\lambda) = \frac{1}{N} \langle \operatorname{tr} \delta(\lambda X) \rangle$
- $d\mu(\{\lambda_i\}) = C_N^{\beta} e^{-N\sum_j V(\lambda_j)} \prod_{i < j} (\lambda_i \lambda_j)^{\beta} \prod_j d\lambda_j$, eigenvalues *interact* with each other $(\beta = 1(2))$ for real(complex) matrices).
- Large N simplifications: theoretical (planar "graphs" dominate in the guise of 't Hooft expansion), practical (8 $\sim \infty$)
- Complex Green's function generates spectral moments M_k : $G(z) = \frac{1}{N} \left\langle \operatorname{tr} \frac{1}{z \mathbf{1}_N X} \right\rangle = \sum_{k=0} \frac{M_k}{z^{k+1}} \text{ where }$ $M_k = \frac{1}{N} \left\langle \operatorname{tr} X^k \right\rangle = \int \rho(\lambda) \lambda^k d\lambda$
- Analytic properties are crucial: $\rho(\lambda) = -\frac{1}{\pi} \lim_{\epsilon \to 0} \Im G(z)|_{z=\lambda+i\epsilon}$

RMT: Matrix-valued probability calculus (real eigenvalues)

- What about spectral cumulants C_k ?
- R-transform [Voiculescu;1986] $R(z) = \sum_{k=1}^{\infty} C_k z^{k-1}$
- $G(R(z) + \frac{1}{z}) = z$ and $R(G) + \frac{1}{G} = z$
- Physicist "proof": RMT is a QFT in 0+0 dimensions, hence $Z=\int dX e^{-N{
 m tr}V(X)}$
 - 't Hooft double line notation for Wick expansion: Propagator $< XX > \sim 1/N$, each vertex brings N, each loop brings N
 - **②** Only planar "Feynman graphs" survive $N o \infty$ limit
 - **3** We define 1PI "self energy" $\Sigma(z)$ as $G(z) = \frac{1}{z \Sigma(z)}$
 - **3** Self-energy gets contributions from renormalized propagators $1/z \to G(z)$ and renormalized vertices C_k , so $Σ(z) = \sum_{k=1} C_k G(z)^{k-1} = R(G(z))$ (Schwinger-Dyson equation)

Diagrammar rules:
$$\frac{1}{2} S_{0}^{2} I \int_{C}^{C} \langle X_{0}^{2} X_{0}^{2} \rangle = \frac{1}{N} S_{0}^{2} S_{0}^{2}$$

Self-energy (1PI) $\frac{1}{N} = \frac{1}{N} S_{0}^{2} S_{0}^{2}$

Wick exp. $\frac{1}{N} = \frac{1}{N} S_{0}^{2} S_{0}^{2}$

S-D eq. $\frac{1}{N} = \frac{1}{N} S_{0}^{2} S_{0}^{2}$
 $\sum \{2\} = c_{1} + c_{2} G(2) + c_{3} G(2) + ... = \sum c_{N} G^{N-1} = R(G)$

R-transform: Addition law

- Knowing $\rho_A(\lambda)$ and $\rho_B(\lambda)$ for independent (free) RM ensembles, we want to infer $\rho_{A+B}(\lambda)$, i.e. calculate $G_{A+B}(z) = \frac{1}{N} \int dX_A dX_B P_A(X_A) P_B(X_B) \mathrm{tr} \frac{1}{z \mathbf{1}_N (X_A + X_B)}$
- Non-commutative convolution, since $[X_A, X_B] \neq 0$
- Addition law: First, from the definition $G(R(z) + \frac{1}{z}) = z$ we read the corresponding transforms $R_A(z)$ and $R_B(z)$. Second we apply addition law $R_{A+B}(z) = R_A(z) + R_B(z)$. Third, we invert functionally $R_{A+B}(z)$ to get the desired result.
- For matrix analogue of the Gaussian distribution only $C_2 \neq 0$, i.e. $R_W(z) = C_2 z$. For $C_2 = 1/4$ Green's function reads $G_W(z) = 2(z \sqrt{z^2 1})$, so $\rho_W(\lambda) = \frac{2}{\pi} \sqrt{1 \lambda^2} \equiv W(0, 1)$. Wigner semicircle \leftrightarrow Gaussian.
- Ex.: $W_A(0,1) \bigoplus W_B(0,1) = W(0,\sqrt{2})$, in analogy to the classical case.

S-transform: Multiplication law

- Knowing $\rho_A(\lambda)$ and $\rho_B(\lambda)$ for independent (free) RM ensembles, we want to infer $\rho_{A \cdot B}(\lambda)$, i.e. calculate $G_{A \cdot B}(z) = \frac{1}{N} \int dX_A dX_B P_A(X_A) P_B(X_B) \mathrm{tr} \frac{1}{z \mathbf{1}_N (X_A \cdot X_B)}$
- In general, for hermitian matrices, $(H_1 \cdot H_2)^{\dagger} \neq H_1 \cdot H_2$, so spectra are complex.
- For unitary random matrices, $(U_1 \cdot U_2)^{\dagger} \cdot U_1 \cdot U_2 = \mathbf{1}$, spectra on the unit circle $\lambda = e^{i\theta}$, analytic methods applicable.
- S-transform [Voiculescu;1987] $S(z)G(\frac{1+z}{z}S(z))=z$
- Multiplication law: $S_{A \cdot B}(z) = S_A(z) \cdot S_B(z)$.
- S-transforms and R-transforms are related, alike Fourier and Mellin transforms are related.
- Alternative version for multiplication law [Janik;1997] $R_{A \cdot B}(g) = R_A(g_B) \cdot R_B(g_A)$ where $g_A = gR_A(g_B)$ and $g_B = R_B(g_A)g$

S-transform - preliminary: relation to R-transform

- $S(z) = \frac{1+z}{z}\chi(z)$, where $\chi(zG(z)-1) = \frac{1}{z}$.
- If $z \equiv yG(y) 1$, then $S(yG(y) 1) = \frac{1}{y \frac{1}{G(y)}}$. Since $G(y) = \frac{1}{z \Sigma(y)}$, we get $S(G(y)\Sigma(y)) = \frac{1}{\Sigma(y)}$. Since $\Sigma(y) = R(G(y))$, we arrive (after taking reciprocals of both sides) at $\frac{1}{S(G(y)R(G(y)))} = R(G(y))$. Finally, changing variables again z = G(y) we arrive at $R(z) = \frac{1}{S(zR(z))}$.
- Note that S transform can be defined only if $R(0) \neq 0$, (non-vanishing first moment)
- Last equation can be inverted: Let us define y=zR(z). Then $S(y)=\frac{1}{R(\frac{y}{R(z)})}=\frac{1}{R(\frac{y}{R(\frac{y}{R(...)})})}$, where z is recursively eliminated ad infinitum $S(y)=\frac{1}{R(yS(y))}$.
- Mutually inverse maps z = yS(y) and y = zR(z)

S-transform - diagrammatics

• We consider $2N \times 2N$ block matrices

$$\mathcal{H} = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix} \qquad \mathcal{H}^{2k} = \begin{pmatrix} (AB)^{2k} & 0 \\ 0 & (BA)^{2k} \end{pmatrix}$$

- We define $\mathcal{G}(w) = \begin{pmatrix} \mathcal{G}_{11}(w) & \mathcal{G}_{12}(w) \\ \mathcal{G}_{21}(w) & \mathcal{G}_{22}(w) \end{pmatrix} = \frac{1}{N} \left\langle \operatorname{tr}_{b2} \frac{1}{w \mathbf{1} \mathcal{H}} \right\rangle$
- Block-trace definition $\operatorname{tr}_{b2}\left(\begin{array}{cc} A & B \\ C & D \end{array} \right) = \left(\begin{array}{cc} \operatorname{tr} A & \operatorname{tr} B \\ \operatorname{tr} C & \operatorname{tr} D \end{array} \right)$
- Note that $G_{AB}(z=w^2)=rac{1}{N}\left\langle \operatorname{tr}rac{1}{z\mathbf{1}-AB}
 ight
 angle =rac{\mathcal{G}_{11}(w)}{w}$
- Similarly, we define $\Sigma(w)=\left(egin{array}{cc} \Sigma_{11}(w) & \Sigma_{12}(w) \\ \Sigma_{21}(w) & \Sigma_{22}(w) \end{array}\right)$, where $\mathcal{G}(w)=(w\mathbf{1}_2-\Sigma(w))^{-1}$

S-transform - alternative formulation

• From the flow of indices $(\mathcal{H}_{12} \leftrightarrow A, \mathcal{H}_{21} \leftrightarrow B)$ we get

$$\Sigma(w) = \begin{pmatrix} 0 & R_A(\mathcal{G}_{21}(w)) \\ R_B(\mathcal{G}_{22}(w)) & 0 \end{pmatrix}$$
 where $\mathcal{G}(w) = (w\mathbf{1}_2 - \Sigma(w))^{-1}$

- $\bullet \begin{pmatrix} \mathcal{G}_{11}(w) & \mathcal{G}_{12}(w) \\ \mathcal{G}_{21}(w) & \mathcal{G}_{22}(w) \end{pmatrix} = \mathcal{G}(w) = (w\mathbf{1}_2 \Sigma(w))^{-1} = \\ \begin{pmatrix} w & -R_A(\mathcal{G}_{21}(w)) \\ -R_B(\mathcal{G}_{22}(w)) & w \end{pmatrix}^{-1}$
- Inverting matrix we get $(w^2 = z)$ $G_{AB}(z) = \frac{1}{z \Sigma_{AB}(z)} = \frac{\mathcal{G}_{11}(w)}{w} = \frac{1}{z R_A(\mathcal{G}_{21}(w))R_B(\mathcal{G}_{12}(w))}$ $\mathcal{G}_{12} = G_{AB}R_A(\mathcal{G}_{21}), \ \mathcal{G}_{21} = G_{AB}R_B(\mathcal{G}_{12})$
- Using $G_{AB}(z) = \frac{1}{z R_{AB}(G_{AB})}$ we get the multiplication law.

Relation to "canonical" form of S

- $G_{AB} \equiv g$, $G_{12} \equiv g_A$, $G_{21} \equiv g_B$
- Algorithm: Three equations with three *complex* variables: $R_{A \cdot B}(g) = R_A(g_B) \cdot R_B(g_A)$ where $g_A = gR_A(g_B)$ and $g_B = R_B(g_A)g$
- To unravel equations, we define $y=gR_{AB}(g)$. Then $g_B=gR_B(g_A)=g\frac{R_{AB}(g)}{R_A(g_B)}=\frac{y}{R_A(g_B)}=\frac{y}{R_A(\frac{y}{A_A(...)}))}$

•
$$R_{AB}\left(\frac{y}{R_{AB}\left(\frac{y}{R_{AB}(...)}\right)}\right) = R_{A}\left(\frac{y}{R_{A}\left(\frac{y}{R_{A}(...)}\right)}\right) R_{B}\left(\frac{y}{R_{B}\left(\frac{y}{R_{B}(...)}\right)}\right)$$

- But one has to assume $R_i(0) \neq 0$ for i = A, B, AB
- Taking reciprocal of the above equation we arrive at $S_{AB}(y) = S_A(y) \cdot S_B(y)$

Non-hermitian case - electrostatic analogy (Dyson gas)

Analytic methods break down, since spectra are complex $\rho(z,\bar{z}) = \frac{1}{N} \left\langle \sum_i \delta^{(2)}(z - \lambda_i) \right\rangle$.

- Potential $\Phi(z, \bar{z}) = \lim_{\epsilon \to 0} \lim_{N \to \infty} \left\langle \frac{1}{N} \operatorname{tr} \ln[(z \mathbf{1}_N X)(\bar{z} \mathbf{1}_N X^{\dagger}) + \epsilon^2 \mathbf{1}_N] \right\rangle$
- Poisson law $\frac{\partial^2 \Phi}{\partial z \partial \overline{z}} = \pi \rho(z, \overline{z})$, since $\delta^{(2)}(z) = \lim_{\epsilon \to 0} \frac{1}{\pi} \frac{\epsilon^2}{(|z|^2 + \epsilon^2)^2}$
- Electric field $G(z, \bar{z}) = \frac{\partial \Phi}{\partial z}$
- Gauss law $\frac{1}{\pi}\partial_{\bar{z}}G(z,\bar{z})=\rho(z,\bar{z})$ [Brown;1986],[Sommers,Crisanti,Sompolinsky,Stein;1988]
- Bad news: $G(z,\bar{z}) = \lim_{\epsilon \to 0} \lim_{N \to \infty} \left\langle \frac{1}{N} \operatorname{tr} \frac{\bar{z} X^{\dagger}}{(z \mathbf{1}_{N} X)(\bar{z} \mathbf{1}_{N} X^{\dagger}) + \epsilon^{2}} \right\rangle$
- No similarity to the hermitian case $G(z) = \left\langle \frac{1}{N} \operatorname{tr} \frac{1}{z \mathbf{1}_{N} X} \right\rangle$
- Important in applications (dissipation, directed percolation, lagged correlations..), interesting in mathematics [Biane,Lehner;1999]

Non-hermitian case - Remedy: $\operatorname{tr} \operatorname{In} A = \operatorname{In} \operatorname{det} A$

$$\operatorname{tr} \ln[(z\mathbf{1}_N - X)(\bar{z}\mathbf{1}_N - X^{\dagger}) + \epsilon^2 \mathbf{1}_N] = \ln \det \begin{pmatrix} z\mathbf{1}_N - X & i\epsilon \mathbf{1}_N \\ i\epsilon \mathbf{1}_N & \bar{z}\mathbf{1}_N - X^{\dagger} \end{pmatrix}$$

• Duplication trick [Janik,MAN,Papp,Zahed;1996],[Feinberg,Zee;1997] $\operatorname{tr}_{b}\begin{pmatrix}A&B\\C&D\end{pmatrix}=\begin{pmatrix}\operatorname{tr} A&\operatorname{tr} B\\\operatorname{tr} C&\operatorname{tr} D\end{pmatrix}$

$$\bullet \ \mathcal{Z}_{N} = \begin{pmatrix} z & i\epsilon \\ i\epsilon & \overline{z} \end{pmatrix} \otimes \mathbf{1}_{N} \equiv \mathcal{Z} \otimes \mathbf{1}_{N} \qquad \mathcal{X} = \begin{pmatrix} X & 0 \\ 0 & X^{\dagger} \end{pmatrix}$$

• 2 by 2 objects
$$\mathcal{G}(\mathcal{Z}) = \frac{1}{N} \left\langle \operatorname{tr}_{\, \mathrm{b}} \frac{1}{\mathcal{Z}_{N} - \mathcal{X}} \right\rangle = \begin{pmatrix} \mathcal{G}_{11} & \mathcal{G}_{1\bar{1}} \\ \mathcal{G}_{\bar{1}1} & \mathcal{G}_{\bar{1}\bar{1}} \end{pmatrix}$$

Benefits of the duplication trick

- Self-energy Σ is a 2 by 2 matrix $\mathcal{G}(\mathcal{Z}) = \frac{1}{\mathcal{Z} \Sigma(\mathcal{Z})}$
- ullet Analogue of R-transform exists $\mathcal{R}(\mathcal{G})+rac{1}{\mathcal{G}}=\mathcal{Z}$
- Addition law holds $\mathcal{R}_{A+B}(\mathcal{Z}) = \mathcal{R}_A(\mathcal{Z}) + \mathcal{R}_B(\mathcal{Z})$
- Upper-left corner of \mathcal{G} , i.e. $\mathcal{G}_{11}=G(z,\bar{z})$, so $\frac{1}{\pi}\partial_{\bar{z}}\mathcal{G}_{11}=\rho(\lambda)$
- Condition $\mathcal{G}_{1\bar{1}}\mathcal{G}_{\bar{1}1}=0$ provides the equation for the boundary of eigenvalues
- Ex.: $W_a(0,1) \bigoplus i \cdot W_b(0,1) = \text{Ginibre-Girko ensemble}$ (uniform distribution bounded by the circle $|z| = \sqrt{2}$)

Hidden algebraic structure unveiled

- Each generic 2 by 2 matrix Q which has appeared before has the structure $Q=\left(egin{array}{cc}z&i\bar{w}\\iw&\bar{z}\end{array}\right)$
- Q is a quaternion
- $Q = q_0 \mathbf{1}_2 + i \sigma_i q_i = \begin{pmatrix} q_0 + i q_3 & i(q_1 i q_2) \\ i(q_1 + i q_2) & q_0 i q_3 \end{pmatrix}$
- One can exploit the whole space of Q, instead of staying infinitesimaly close (ϵ) in transverse directions (1,2)
- Algorithm how to embed Greens functions and R-transforms in quaternion space for any hermitian H, any $H_1 + iH_2$ [Jarosz,MAN;2004], any unitary U [Jarosz,Goerlich;2005], and several other cases.
- Examples: $\mathcal{R}_{GUE}(Q) = Q$, $\mathcal{R}_{G-G}\begin{pmatrix} a & i\bar{b} \\ ib & \bar{a} \end{pmatrix} = \begin{pmatrix} 0 & i\bar{b} \\ ib & 0 \end{pmatrix}$

Correspondence of the addition laws

Hermitian case

- real spectra
- Green's function G(z) is complex
- $G(R(z) + \frac{1}{z}) = z$
- Addition law $R_{A+B}(z) = R_A(z) + R_B(z)$
- Analytic functions (cuts and poles as singularities)

Non-hermitian case

- complex spectra
- Green's function G(Q) is a quaternion
- $\mathcal{G}(\mathcal{R}(Q) + \frac{1}{Q}) = Q$
- Addition law $\mathcal{R}_{A+B}(Q) = \mathcal{R}_A(Q) + \mathcal{R}_B(Q)$
- Matrix-valued non-analytic functions

Does nonhermitian S transform exist?

Despite doubts if such construction is possible at all, several recent results on products of random matrices were suggesting the possibility that such law may exist, e.g.:

- Nonhermitian diffusion [Janik, Jurkiewicz, Gudowska-Nowak, MAN; 2003], [Lohmayer, Neuberger, Wettig; 2008], [Warchoł; 2010]
- Products of centered complex matrices
 [Girko,Vladimirova;2009], [Burda, Janik,
 Wacław;2010], [Burda, Jarosz, Livan, MAN, Święch;2010]
- Time-lagged correlations [Biely, Thurner; 2007], [Jarosz; 2010]
- Additive laws for unitary ensembles [Goerlich, Jarosz; 2004]
- Multiplication for vanishing mean ensembles [Rao,Speicher;2007]

Multiplication law for non-hermitian random matrices

- Multiplication law reads [Burda, Janik, MAN; 2011a] :
- $\mathcal{R}_{A \cdot B}(\mathcal{G}_{A \cdot B}) = \mathcal{R}_{A}^{L}(\mathcal{G}_{B}) \cdot \mathcal{R}_{B}^{R}(\mathcal{G}_{A})$ where $\mathcal{G}_{A} = \left[\mathcal{G}_{A \cdot B} \mathcal{R}_{A}^{L}(\mathcal{G}_{B})\right]^{L}$ and $\mathcal{G}_{B} = \left[\mathcal{R}_{B}^{R}(\mathcal{G}_{A})\mathcal{G}_{A \cdot B}\right]^{R}$ where for generic Q we have $Q^{L} = UQU^{\dagger} \ (Q^{R} = U^{\dagger}QU)$ and $U = e^{i\frac{\phi}{2}\frac{\sigma_{3}}{2}}$ with $\phi = \operatorname{Arg} z$.
- Note that order matters, since matrices (quaternions) do not commute.
- Three (matrix-valued) equations for three quaternion variables.
- In the case when $[\mathcal{G},\mathcal{R}]=0$, addition law gets reduced to S-transform by Voiculescu, i.e to the mutiplication law for complex functions $R_{A\cdot B}(G_{A\cdot B})=R_A(G_B)\cdot R_B(G_A)$ where $G_A=G_{A\cdot B}R_A(G_B)$ and $G_B=R_B(G_A)G_{A\cdot B}$

Elements of the construction (1)

 We have product of random matrices and spectrum is complex, so we combine both duplication tricks:

$$\bullet \ \mathcal{H} = \left(\begin{array}{cccc} 0 & A & 0 & 0 \\ B & 0 & 0 & 0 \\ 0 & 0 & 0 & B^{\dagger} \\ 0 & 0 & A^{\dagger} & 0 \end{array} \right)_{4N \times 4N}$$

$$\bullet \ \mathcal{G}(\mathcal{W}) \equiv \begin{pmatrix} \mathcal{G}_{11} & \mathcal{G}_{12} & \mathcal{G}_{1\bar{1}} & \mathcal{G}_{1\bar{2}} \\ \mathcal{G}_{21} & \mathcal{G}_{22} & \mathcal{G}_{2\bar{1}} & \mathcal{G}_{2\bar{2}} \\ \mathcal{G}_{\bar{1}1} & \mathcal{G}_{\bar{1}2} & \mathcal{G}_{\bar{1}\bar{1}} & \mathcal{G}_{\bar{1}\bar{2}} \\ \mathcal{G}_{\bar{2}1} & \mathcal{G}_{\bar{2}2} & \mathcal{G}_{\bar{2}\bar{1}} & \mathcal{G}_{\bar{2}\bar{2}} \end{pmatrix}_{4\times 4} = \frac{1}{N} \left\langle \operatorname{tr}_{b4} \frac{1}{\mathcal{W} \otimes \mathbf{1} - \mathcal{H}} \right\rangle$$
where $\mathcal{W} = \operatorname{diag}(w, w, \bar{w}, \bar{w})$

• Similarly $\Sigma(\mathcal{W}) = \mathcal{R}(\mathcal{G}(\mathcal{W}))$ where $\mathcal{G}(\mathcal{W}) = (\mathcal{W} - \Sigma(\mathcal{W}))^{-1}$ are all 4 by 4 matrices

Elements of the construction (II)

- $\bullet \ \, \text{Flow of indices yields} \, \, \Sigma = \left(\begin{array}{cccc} 0 & \Sigma_{AA} & \Sigma_{A\bar{A}} & 0 \\ \Sigma_{BB} & 0 & 0 & \Sigma_{B\bar{B}} \\ \Sigma_{\bar{B}B} & 0 & 0 & \Sigma_{\bar{B}\bar{B}} \\ 0 & \Sigma_{\bar{A}A} & \Sigma_{\bar{A}\bar{A}} & 0 \end{array} \right)$
- Above eight elements can be grouped

$$\begin{pmatrix} \Sigma_{AA} & \Sigma_{A\bar{A}} \\ \Sigma_{\bar{A}A} & \Sigma_{\bar{A}\bar{A}} \end{pmatrix} = \begin{pmatrix} \mathcal{R}_{AA}(\mathcal{G}_B) & \mathcal{R}_{A\bar{A}}(\mathcal{G}_B) \\ \mathcal{R}_{\bar{A}A}(\mathcal{G}_B) & \mathcal{R}_{\bar{A}\bar{A}}(\mathcal{G}_B) \end{pmatrix} = \mathcal{R}_A(\mathcal{G}_B)$$

$$\begin{pmatrix} \Sigma_{BB} & \Sigma_{B\bar{B}} \\ \Sigma_{\bar{B}B} & \Sigma_{\bar{B}\bar{B}} \end{pmatrix} = \begin{pmatrix} \mathcal{R}_{BB}(\mathcal{G}_A) & \mathcal{R}_{B\bar{B}}(\mathcal{G}_A) \\ \mathcal{R}_{\bar{B}B}(\mathcal{G}_A) & \mathcal{R}_{\bar{B}\bar{B}}(\mathcal{G}_A) \end{pmatrix} = \mathcal{R}_B(\mathcal{G}_A)$$

ullet Matrices \mathcal{G}_A and \mathcal{G}_B are unknown (alike g_A, g_B)

$$\mathcal{G}_{A} = \left(\begin{array}{cc} \mathcal{G}_{12} & \mathcal{G}_{1\bar{1}} \\ \mathcal{G}_{\bar{2}2} & \mathcal{G}_{\bar{2}\bar{1}} \end{array}\right) \mathcal{G}_{B} = \left(\begin{array}{cc} \mathcal{G}_{21} & \mathcal{G}_{2\bar{2}} \\ \mathcal{G}_{\bar{1}1} & \mathcal{G}_{\bar{1}\bar{2}} \end{array}\right)$$

Elements of the construction (III)

• Note that $G_{AB}(z,\bar{z}) = \mathcal{G}_{MM}(\mathcal{Z}) = \frac{\mathcal{G}_{11}(\mathcal{W})}{w}$, where M = AB. It is possible iff

$$\begin{split} \Sigma_{M} &\equiv \begin{pmatrix} \Sigma_{MM} & \Sigma_{M\bar{M}} \\ \Sigma_{\bar{M}M} & \Sigma_{\bar{M}\bar{M}} \end{pmatrix} = \\ & \begin{pmatrix} \Sigma_{AA} & \sqrt{\frac{w}{\bar{w}}} \Sigma_{A\bar{A}} \\ \sqrt{\frac{\bar{w}}{\bar{w}}} \Sigma_{\bar{A}A} & \Sigma_{\bar{A}\bar{A}} \end{pmatrix} \cdot \begin{pmatrix} \Sigma_{BB} & \sqrt{\frac{\bar{w}}{\bar{w}}} \Sigma_{B\bar{B}} \\ \sqrt{\frac{\bar{w}}{\bar{w}}} \Sigma_{\bar{B}B} & \Sigma_{\bar{B}\bar{B}} \end{pmatrix} \equiv \Sigma_{A}^{L} \Sigma_{B}^{R} \end{split}$$

- Recalling that $\Sigma_A = \mathcal{R}_A(\mathcal{G}_B)$ and $\Sigma_A = \mathcal{R}_A(\mathcal{G}_B)$ we have $\mathcal{R}_M(\mathcal{G}_M) = \left[\mathcal{R}_A(\mathcal{G}_B)\right]^L \cdot \left[\mathcal{R}_B(\mathcal{G}_A)\right]^R$.
- Tedious calculations allow to close the construction $\mathcal{G}_A = \left[\mathcal{G}_M \cdot \left[\mathcal{R}_A(\mathcal{G}_B)\right]^L\right]^L \qquad \mathcal{G}_B = \left[\left[\mathcal{R}_B(\mathcal{G}_A)\right]^R \cdot \mathcal{G}_M\right]^R$

Elements of the construction (IV)

- Formally, one can define now two matrix-valued S-transforms via equations
- $S^{(LEFT)}(\mathcal{Y}) = \frac{1}{\mathcal{R}^{L}([S^{(LEFT)}(\mathcal{Y})\mathcal{Y}]^{R})}$
- $\bullet \ \mathcal{S}^{(\textit{RIGHT})}(\mathcal{Y}) = \frac{1}{\mathcal{R}^{\textit{R}} \big(\big[\mathcal{Y} \mathcal{S}^{(\textit{RIGHT})}(\mathcal{Y}) \big]^{\textit{L}} \big)}$
- Multiplication law reads

$$\begin{split} & \left[\mathcal{S}_{M}^{(LEFT)} \left(\left[\mathcal{R}(\mathcal{G}) \mathcal{G} \right]^{L} \right) \right]^{R} = \left[\mathcal{S}_{M}^{(RIGHT)} \left(\left[\mathcal{G} \mathcal{R}(\mathcal{G}) \right]^{R} \right) \right]^{L} = \\ & \mathcal{S}_{B}^{(RIGHT)} \left(\mathcal{G} \mathcal{R}_{M}(\mathcal{G}) \right) \cdot \mathcal{S}_{A}^{(LEFT)} \left(\mathcal{R}_{M}(\mathcal{G}) \mathcal{G} \right) \end{split}$$

Algorithm at work

- Write down known $\mathcal{R}_A(\mathcal{G}_B)$ and $\mathcal{R}_B(\mathcal{G}_A)$, where $\mathcal{G}_A = \begin{pmatrix} a & i\bar{b} \\ ib & \bar{a} \end{pmatrix}$ and $\mathcal{G}_B = \begin{pmatrix} a' & i\bar{b}' \\ ib' & \bar{a}' \end{pmatrix}$
- ② Modify $\mathcal{R}_A \to \mathcal{R}_A^L$, $\mathcal{R}_B \to \mathcal{R}_B^R$
- Write down consistency conditions $(\mathcal{Z} \mathcal{R}_M)\mathcal{G}_A^R = [\mathcal{R}_A(\mathcal{G}_B)]^L$ and $\mathcal{G}_B^L(\mathcal{Z} \mathcal{R}_M) = [\mathcal{R}_B(\mathcal{G}_A)]^R$
- **5** Solve (4) for a, b, a', b' and read out \mathcal{G}_M

Note that if A and B are identical free ensembles, pair (3) reduces to one equation, since a=a', b=b'.

Example 1: GUE times GUE

① We ask for the spectrum of $H_A \cdot H_B$, where both ensembles are free (independent) GUE. Then for both ensembles $\mathcal{R}_A(\mathcal{G}) = \mathcal{R}_B(\mathcal{G}) = \mathcal{G}$, in analogy to R(z) = z.

- Consistency conditions provide matrix equation for a, b.
- **3** Two solutions: a = b = 0 or a = 0, $|b|^2 = 1 w\bar{w} = 1 \sqrt{z\bar{z}}$
- **1** Holomorphic solution $G(z)=\frac{1}{z}$, nonholomorphic $G(z,\bar{z})=\sqrt{\frac{\bar{z}}{z}}$, they match on boundary |z|=1

Spectral density $\rho(z,\bar{z}) = \frac{1}{\pi} \partial_{\bar{z}} G(z,\bar{z}) = \frac{1}{2\pi} \frac{1}{\sqrt{x^2 + y^2}}$ on unit disc.

So $W_A(0,1) \otimes W_B(0,1)$ is a "Halloween hat" law [Girko, Vladimirowa; 2009], [Burda, Janik, Wacław; 2010]

Example 1: Visualization

Note qualitative similarity to $N_a(0,1)\otimes N_b(0,1)=\frac{1}{\pi}K_0(x)$.

Example 2: Shifted Ginibre-Girko Ensemble times shifted Ginibre-Girko Ensemble

- We ask for the spectrum of $(1 + X_A)(1 + X_B)$, where both ensembles X_A , X_B are free (independent) GGE, i.e. spectrum of 1 + X is uniform unit disc centered at x = 1, y = 0.
- $\bullet \ \mathcal{R}_{1+X} \left(\begin{array}{cc} a & i\bar{b} \\ ib & \bar{a} \end{array} \right) = \left(\begin{array}{cc} 1 & i\bar{b} \\ ib & 1 \end{array} \right)$
- Algorithm yields the boundary and the spectral density
- Boundary belongs to the family of parametric curves appearing in non-hermitian diffusion, density involves the solution of biquadratic equation [Gudowska-Nowak,Janik,Jurkiewicz,MAN;2003]
- Boundary reads $r = 1 + 2\cos\phi$, where $z = re^{i\phi}$.
- Curve known as Pascal limaçon (after Etienne Pascal (1588-1651), father of Blaise Pascal), but actually known already to Albrecht Dürer (Underweysung der Messung, 1525)

Limaçon: visualization by Dürer

Limaçon: visualization five centuries later...

Limaçon in 3D

Limaçon: numerical crosscheck of spectral desnity at y = 0

Challenges

- Mathematical arguments why described construction is possible
- Geometric interpretation of the left and right rotation (connection to SU(2)), $X^L = UXU^{\dagger}$, $X^R = U^{\dagger}XU$, where $U = e^{i\frac{\sigma_3}{2}\frac{\phi}{2}}$.
- Less academic examples [Burda, Janik, MAN; 2011b]

Summary

type of randomness	Addition law	Multiplication law
Random variables	$\sqrt{}$	$\sqrt{}$
Random matrices (1-d)		
Random matrices (2-d)		

"Quaternization" [Jarosz, Nowak; 2004]

- For any hermitian H, knowing G(z) and R(z), we write down $\mathcal{G}(Q) = \frac{qG(q) \bar{q}G\bar{q}}{q \bar{q}} \mathbf{1}_2 \frac{G(q) G(\bar{q})}{q \bar{q}} Q^{\dagger}$ $\mathcal{R}(Q) = \frac{qR(q) \bar{q}R\bar{q}}{q \bar{q}} \mathbf{1}_2 \frac{R(q) R(\bar{q})}{q \bar{q}} Q^{\dagger}$ where q, \bar{q} are eigenvalues of the quaternion Q. Note that $\mathcal{R}(\mathcal{G}(Q) + 1/Q) = Q$
- In analogy to $G_{tH}(z) = \frac{1}{t}G_H(\frac{z}{t})$ and $R_{tH} = tR_H(tz)$ for t real we have now for complex t $G_{tX}(Q) = G_X(\mathcal{T}^{-1}Q)\mathcal{T}^{-1}$ and $\mathcal{R}_{tX}(Q) = \mathcal{T}\mathcal{R}_X(Q\mathcal{T})$, where $\mathcal{T} = \operatorname{diag}(t, \bar{t})$
- Similar formulae for unitary ensembles [Jarosz, Goerlich;2005], in particular for CUE we get

$$\mathcal{R}_{CUE}\left(\begin{array}{cc} a & i\bar{b} \\ ib & \bar{a} \end{array}\right) = \left(\begin{array}{cc} 0 & i\bar{b}\frac{1-\sqrt{1-4|b|^2}}{2|b|^2} \\ ib\frac{1-\sqrt{1-4|b|^2}}{2|b|^2} & 0 \end{array}\right)$$