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CQG

Compact Quantum Groups: definition

Definition (Woronowicz)

A compact quantum group is a pair (A, A), where A is a unital
C*-algebra, A : A — A® A is a unital, *-homomorphism which is

coassociative, i.e.
(A®idp)o A = (ida ® A)o A
such that the quantum cancellation rules are satisfied

Lin((1 ® A)A(A)) = Lin((A ® 1)A(A)) = A® A.
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CQG

The Hopf x-algebra of “smooth” elements

A unital x-algebra A is called x-bialgebra if it is equipped with
two *-homomorphisms A : A — A ® A (coproduct) and
e A — C (counit) satisfying

([d®A)ocA=(A®id)oA, (ld®e)oA=(e®id)oA =id.
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CQG

The Hopf x-algebra of “smooth” elements

A unital x-algebra A is called x-bialgebra if it is equipped with
two *-homomorphisms A : A — A ® A (coproduct) and
e A — C (counit) satisfying

([d®A)ocA=(A®id)oA, (ld®e)oA=(e®id)oA =id.

A x-bialgebra A is called a Hopf x-algebra if there exists a linear
mapping S : A — A (antipode) such that Sox oS ox* =id and

(S®id)o Aa) = £(a)l = (id ® S) o A(a).
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Unitary corepresentations

» n-dimensional unitary corepresentation of A :
U = (ujk)1<jk<n € Mp(A) a unitary such that for all
J,k=1,...,n we have

A(uj) E : Ujp @ Upk-

> Let (U(S))SGI be a complete family of mutually inequivalent
irreducible unitary correpresentations of A
> The algebra of the "smooth” elements of A is defined as

A =Lin{ul);s € 7,1 <,k < ng},

where ns is the dimension of uls),
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CQG

Unitary corepresentations

» n-dimensional unitary corepresentation of A :
U= (uj'k) i.k<n € Mp(A) a unitary such that for all
J,k=1,...,n we have

A(uj) E : Ujp @ Upk-

> Let (U(S))SGI be a complete family of mutually inequivalent
irreducible unitary correpresentations of A
> The algebra of the "smooth” elements of A is defined as

A =Lin{ul);s € 7,1 <,k < ng},

where ns is the dimension of uls),

A is a dense *- sul()algebra of A, which |(s)a Hopf(*) algebra with
E(Uk ) =0k and S(uy’)= (ukj ).
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Example SU,4(2)

Let g € [-1,0) U (0,1]. The quantum group SUq(2) is the
C*-algebra generated by the coefficients of the matrix

(5 )
v @

with the relations on « and ~ that ensure UU* = U*U =1 and
that the quantum determinant D(U) = 1 and with the
comultiplication

Ald)=a@a+y®7y, AM)=72a+a"@7.
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Example SU,(2)

Dirichlet forms

The Hopf algebra A is given by

A = *-Alg{a,’y} == POl(Oé, a*ar)/afy*)7
e(a) =1,¢(y) =0,

5(a) = a%,5(7) = —q7.

=] = = = = DAl
. e e e L
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Example SU,4(2)
The Hopf algebra A is given by

A =xAlgla, v} = Pol(a, a”,7,77),
(@) =1,6(7) =0, S(a)=a"S(y)=—q7.

On the other hand, A = Lin{u(,f); s€Z,1<j,k<ns}, where

7=1N, U =(1), U3 = U =(a_q3 >
v«
o? 1+¢va  P(0)
v = Vitae 1- (1+q)7'y —q\/1+ q?a™y*

7 V1+ oty (a*)?
etc.
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Example SU,(N)

The quantum group SUg(N) is generated by the matrix elements
of U = [ujj]i j=1,..n satisfying the relations

U,‘j ukj
u,-j uj
U,'J' Uyl

Ujj Uy

quyjuij  for i < k,

qujuj  for j < I,

uuj fori < k,j>1,

uguii + q N1 — ¢ uguy; fori < k,j <1,

with the additional requirement on the quantum determinant

D=DU):=> (-9 uyo1y... tpom = 1.

The involution is determined by the relation UU* = U*U = 1.

O'ESn

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups

—~ —~ —~
w N
~— — — —

N



CQG

Example SU,(N)

We have
A ==*-Alg{uy;i,j=1,...,N}

n
A(uj) = Z Ujp ® upk,  (Uj) = Ojk,  S(uj) = uj.
p=1

The matrix U is a corepresenatation and the family of irreducible,
inequivalent, unitary corepresetations is indexed by (3N)N=1.
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The Haar state

Notation: for a € A and £,¢& € A’

Ex&(a) = (E@&)Aa)
Exa = (Id®¢&)A(a)
ax&{ = (E®id)A(a)

Theorem (Woronowicz)

Let (A, A) be a compact quantum group. There exists unique
state (called the Haar measure) h on A such that

axh=hxa=h(a)l, acA.
Note that, in general, h is not a trace!
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Woronowicz characters

Theorem (Woronowicz)

Then there exists a unique family (7;),cc of linear multiplicative
functionals on A, called the Woronowicz characters, such that:

1.

I T o

f,(1)=1forzeCand fy=¢

C > z+ f;(a) € C is an entire holomorphic function.

fz, % f, = fz 44, for any z;,z, € C.

f,(S(a)) = f_,(a) and fz(a*) = f_,(a), forany z € C, a € A.
S%(a) =f_1xaxf forac A

h(ab) = h(b(fi x ax f1)) for a, b € A.
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Woronowicz characters

Theorem (Woronowicz)

Then there exists a unique family (7;),cc of linear multiplicative
functionals on A, called the Woronowicz characters, such that:

1.

I T o

f,(1)=1forzeCand fy=¢

C > z+ f;(a) € C is an entire holomorphic function.

fz, % f, = fz 44, for any z;,z, € C.

f,(S(a)) = f_,(a) and fz(a*) = f_,(a), forany z € C, a € A.
S%(a) =f_1xaxf forac A

h(ab) = h(b(fi x ax f1)) for a, b € A.

Example for SU,(2): fz(u},f)) = q?Uth§,,
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Decomposition of the antipode
Theorem (Woronowicz):

The closure S of the antipode S admits the “polar”

decomposition: S=—Ror,
2

where ]
» 7, is the analytic generator of a one parameter group (7¢)ter

2
of x-automorphisms of the C*-algebra A

» R is a linear antimultiplicative norm preserving involution,
commuting with the adjoint, that commutes with the(7¢)er,
iie.7oR=RoT: forall t € R.

From the proof:
Tt(a) = f,-t*a* f_it7

R(a) = S(f% *a*f_%)
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NC Lévy Processes

Noncommutative Lévy Processes

Let A be a *-bialgebra and let (P, ®) be a noncommutative
probability space.
» a random variable on A over (P, ®) is a *-algebra
homomorphism from A into the space (P, ®)
» the distribution of the random variable j : A — P is the
state p; = P o
» a quantum stochastic process on A is a family of random
variables (j)¢cs on A indexed by a set J
» the convolution product of ji, > : A — P is the random
variable j1 x o = mp o (j1 ® j2) o A, where mp denotes the
product in P.
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NC Lévy Processes

Noncommutative Lévy Processes

A quantum stochastic process (jst)o<s<e<T (T € Ry U{oo}) on a
«-bialgebra A over (P, ®) is called Lévy process if it satisfies:
» (increment property)

Jrsxjst = Jjrr forall0<r<s<t<T

and jy =elpforall 0 <t < T,
> the increments (js;) are (tensor) independent, i.e. for disjoint
intervals (t;, s;]

¢(j51t1 (al)"'.jsntn(an)) = (D(jsltl (al)) "'d>(j5ntn(an))

and Usi,ti(al)vjsj,tj(a2)] =0 for i;ﬁj,

» the increments (js;) are stationary, i.e. ps = ® o js depends
onlyont—s,

» (weak continuity) js; converges to jss in distribution for

t\,Ss.
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NC Lévy Processes

The convolution semigroup and the generator of a NC
Lévy process

The marginal distributions ps_; := s = ® o ji; of a Lévy process
(JstJo<s<t form a convolution semigroup of states, i.e.

> 0o =€, Ps* Pt = Pstt, limeg pe(b) = e(b) for all b € A,
> (1) =1, pr(b*b) >0 for all b€ A and t > 0.

There exists a unique functional L : A — C, called the generating
functional, such that

d
pr=exp,tL and L= EWL:O'
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NC Lévy Processes

Lévy Processes and Markov semigroup

Given a convolution semigroup of states (¢;)¢>0, we can define a
semigroup of operators

Tt:(id®gpt)OA, tZO

Its infinitesimal generator G : A — A is the convolution operator
associated to the generating functional L, i.e.

G(a)=(id®L)oA(a) = Lxa.

Notation: G = T;.
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NC Lévy Processes

Lévy Processes and Markov semigroup

Given a convolution semigroup of states (¢;)¢>0, we can define a
semigroup of operators

Tt:(id®gpt)OA, tZO

Its infinitesimal generator G : A — A is the convolution operator
associated to the generating functional L, i.e.

G(a)=(id®L)oA(a) = Lxa.

Notation: G = T;.

Remark

G : A — A is a convolution operator if and only if
AoG=(id® G)oA.

In this case L(a) = ¢ o G(a).
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Characterisation of Generators of Convolution Semigroups

Theorem (Schoenberg correspondence):

The functional L: A — C is a generating functional of a
convolution semigroup of states if and only if L is

» hermitian, i.e. L(b*) = L(b),
» conditionally positive, i.e. L(b*b) > 0 provided (b) =0,

» and L(1) = 0.
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Lévy Processes and the Generators

noncommutative Lévy process

(st )o<s<t
)
convolution semigroup semigroup of
of states (¢¢)t>0 —  Markov operators (T¢)t>0
) )
generating functional infinitesimal generator
L:A—C — T, :A— A

!

hermitian, cond. positive
L:A—C, st L(1)=0

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups



CQG NC Lévy Processes "Commutative’ part Symmetry KMS-Symmetry ad-Invariance Dirichlet forms

Lévy Processes and the Generators

noncommutative Lévy process

(st Jo<s<t
!
convolution semigroup semigroup of
of states (¢)t>0 —  Markov operators (T¢)¢>0
) !
generating functional infinitesimal generator
L:A—C > T, - A— A

!

hermitian, cond. positive
L:A—C, st L(1)=0
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Aim of the project: study the noncommutative geometry
of a quantum group via its Lévy processes

|deas / Problems / Questions :
» Which processes (and their generators) give interesting

information about the nc geometry?

» Are nc Brownian motions (i.e. gaussian generators) useful for
that?

» What other conditions (symmetries) on the generators would
be appropriate?
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NC Lévy Processes

Aim of the project: study the noncommutative geometry
of a quantum group via its Lévy processes

|deas / Problems / Questions :

» Which processes (and their generators) give interesting
information about the nc geometry?

» Are nc Brownian motions (i.e. gaussian generators) useful for
that?

» What other conditions (symmetries) on the generators would
be appropriate?

» Extend the theory of Dirichlet forms associated to Markov
semigroups and the construction of their derivations to the
non-tracial case (cf. Cipriani& Sauvageot)
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'Commutative’ part of SUy(n)

Let
Ki = kere,
Ky = Lin{aja: a1,as € kere},
K, = Lin{ajay...a,:a1,az,...,a, € kere},
Ko = []Kn
n>1

i
i
N
o
P
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'Commutative’ part of SUy(n)
Description of K for SU,(n)

> ujj, uj; € Ko for i #j
> Uil = ujjuj, u,-,-ul-";. = uj”;.u,-,- (modulo Ko, for i # j)

> ujui = urujj =1 (modulo Ki)

> U11...Upp = 1 (modulo Ky)
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"Commutative’ part

'Commutative’ part of SU,(n)
Description of K., for SUy(n)

ujj, uj; € Koo for i # j

. . — e e e * P * . [ [
Uil = Ujlij, Ui} = ULUj (modulo Ko, for i # j)
ujur = vt =1 (modulo Kx)

vV v v Y

U11 ... Upp = 1 (modulo Ky)

Theorem
The ideal K is also a coideal in A, A/K is a x-bialgebra and

A/Kyo =2 C(T™ ).

All processes for which L|k_ = 0 are isomorphic to processes on
the (n — 1)-dimensional torus.
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"Commutative’ part

'Commutative’ part of SU,(n)

Definition

A generator L is called a Gaussian generator if L|x, = 0.
Observation

The gaussian processes on SU,(n) encode the structure of

(n — 1)-dimensional torus, i.e. they give no information on the
noncommutative geometry of SUq(n).

For SUq(2) this was shown by
M. Schiirmann and M. Skeide'1998.
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Symmetric generators
We shall consider the inner product induced by the Haar state h

(a, b) := h(a*b).
Recall: each generator L of a Lévy process induces the operator
Ti(a)=Lxa=(id®L)oA(a), ac A

Proposition

Each operator T; : A — A admits unique adjoint, i.e. there exists
a unique linear map T}/ : A — A such that

h(a"Tu(b)) = h(T[(a)"b)
for all a,b € A.

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups
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Symmetric generators on quantum groups

We say that a generating functional L is symmetric if the operator
T, is self-adjoint, i.e. if

h(a* To(b)) = h(T.(a)*b), abc A.

(— GNS-symmetry).

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups



Symmetry

Symmetric generators on quantum groups

We say that a generating functional L is symmetric if the operator
T, is self-adjoint, i.e. if

h(a* T (b)) = h(TL(a)*b), a,be A.
(— GNS-symmetry).

Question:

For which generators L of Lévy processes the operator T is
self-adjoint?
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"Commutative’ part Symmetry KMS-Symmetry ad-Invariance Dirichlet forms
. e e e L
Symmetric generators
One can show that

TZ = TL#oS:

where [#(a) = L(a*),
therefore, if L is hermitian, then L# = L.
Proposition: T, = Tf iff L=LoS

=] = = = = DAl
. e e e L
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Symmetry

Symmetric generators

One can show that
Tf = T,4.5, where L#(a) = L(a%),

therefore, if L is hermitian, then L% = L.
Proposition: T, = T} iff L=LoS

Remark
A hermitian functional L is symmetric iff the matrices L(U(®)) are
hermitian:

S = () = L) = (Lo ) = L)) = L)),
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"Commutative’ part Symmetry KMS-Symmetry ad-Invariance Dirichlet forms
. e e e L
Symmetric generators
Examples
Let

L(UJ(S)) = cséjk.

Then L is symmetric for any family (¢s)sez of real numbers.

=] = = = = DAl
. e e e L
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Symmetric generators

Examples

Let
L(uj(,f)) = Csfsjk.

Then L is symmetric for any family (cs)sez of real numbers.
Example in case of SU,(2)

If L is symmetric, then L(u}:)) = Cj0jk with ¢js € R.
If, moreover, L is hermitian, then ¢j s = c_;s.

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups
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Symmetric generators

Examples
Let
L(UJ(E)) = Cs(sjk‘

Then L is symmetric for any family (cs)ser of real numbers.

Example in case of SU,(2)
If L is symmetric, then L(u}:)) = G j0jk with ¢j s € R.
If, moreover, L is hermitian then ¢js = c_js.

(follows from 52( )) q2U—k) (,f) and (u (S)) = u(_sj)’_j)
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Symmetry

Symmetric generators

Examples
Let
L(UJ(E)) = Cs(sjk‘

Then L is symmetric for any family (cs)ser of real numbers.

Example in case of SU,(2)
If L is symmetric, then L(u}:)) = G j0jk with ¢j s € R.
If, moreover, L is hermitian, then ¢j s = c_;s.

(follows from Sz(u},f)) = qz(j—k)u}:) and (ujg-s))* = u(_sj)’_j)
Problem
For which cs, L is conditionally positive?

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups



CQG NC Lévy Processes "Commutative’ part

Symmetry

KMS-Symmetry

ad-Invariance

Symmetric generators: positivity

Dirichlet forms

positive?

Problem: for which ¢ is LA — C with L(uj,f)) = ¢;0j is cond.

=] = = = = DAl
. e e e L
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Symmetric generators: positivity

Problem: for which ¢ is LA — C with L(u}:)) = ¢;0j is cond.
positive?

Idea: use the subalgebra spanned by the characters (traces) of
irreducible unitary corepresentations.
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Symmetric generators: positivity

for SU4(2) (works more generally for g-deformations G4 of
compact simple Lie groups)

» a € A positive = p,(b) :=h ((f_% *ax f_%)b> positive

» The subalgebra A spanned by traces of the coreps does not
depend on g

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups



Symmetry

Symmetric generators: positivity

for SU4(2) (works more generally for g-deformations G4 of
compact simple Lie groups)

» a € A positive = p,(b) :=h ((f_l *ax* f_;)b) positive

2 2
» The subalgebra A spanned by traces of the coreps does not
depend on g
> If a=Y"_n2asxs € Ag (with xs = nis Y res u,(j()), then

(s)y _ dshs
paluy’) = D. Ojs
where Ds is the quantum dimension of U(®), D, = q_2511__—"§;.
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Symmetry

Symmetric generators: positivity
for SU4(2) (works more generally for g-deformations G4 of
compact simple Lie groups)
» a € A positive = p,(b) :=h ((f_% *ax f_%)b) positive
» The subalgebra A spanned by traces of the coreps does not

depend on g
> If a=Y"_n2asxs € Ag (with xs = nis Y res u,((i)), then
asn
%(U}f)) = SD: Ok

1_q25
1—qg2 -

where D; is the quantum dimension of U(S), Ds = q_25

> If (as) are s.t. a is positive for SU(2) (classical group), then
a is positive and L := ¢, — p,(1)e is conditionally positive.

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups



KMS-Symmetry

KMS-symmetry

Definition

Let o := {a¢ : t € R} be a strongly continuous group of
automorphisms of a C*-algebra A and 3 € R. A state w is said to
be a («, 3)-KMS state if it is a-invariant and if the following
KMS-condition holds true:

w(aaig(b)) = w(ba)
for all a, b in a norm dense, a-invariant %-subalgebra of A.

» KMS states corresponding to 3 = 0 are just the traces over A.

» KMS states ~ equilibrium of quantum statistical systems
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KMS-Symmetry

KMS-symmetry

Let o := {a¢ : t € R} be a strongly continuous group of
automorphisms of a C*-algebra A and w be a fixed («, 5)-KMS
state, for some § € R.

Definition of KMS-symmetry

An operator ® : A — A is said to be (a, 5)-KMS symmetric with
respect to w if

w(bd(a)) = w(a_%(a) ®(a,; (b))

NS

for all a, b in a norm dense, a-invariant *-subalgebra B of A.
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KMS-Symmetry

KMS-state on quantum groups

Theorem (Woronowicz):

The formula
oi(a) = fiy x a* fir

defines a one parameter group of modular automorphisms of A
and the Haar measure h is a (0, —1)-KMS state:

h(ab) = h(b(fy xa* f;)) = h(boi(a)), a,be A.

Question:

For which generators L of Lévy processes the operator T is
KMS-symmetric?
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KMS-symmetry

The condition of the KMS-symmetry of an operator T; can be
expressed as a relation between T, and T}
h(TL*(a)*b) =h(a*T.(b)) = h((a

) TLOO'é')(a)* b)

i
2
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KMS-Symmetry

KMS-symmetry

The condition of the KMS-symmetry of an operator T; can be
expressed as a relation between T, and T}

h(T7(a)"b) = h(a*To(b) = h((c_; o Ty 0.05)(a)" b).
2 2
Using T, = Lxa, T} = (L¥ o S)x a and 04(a) = fir x ax fir, we

have
L*a:f_;*(L#os)*f;*a.
2 2
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KMS-Symmetry

KMS-symmetry

The condition of the KMS-symmetry of an operator T; can be
expressed as a relation between T, and T}

h(TL*(a)*b) =h(a*T.(b)) = h((afé- oT,o aé-)(a)* b).

Using T, = Lxa, T} = (L¥ o S)x a and 04(a) = fir x ax fir, we
have
L*a:f_;*(L#os)*f;*a.
2 2

If L is hermitian, this reduces to

L(a):5o(L*a):(L05)(f%*a*f_ )

1
2
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KMS-Symmetry

KMS-symmetry
The condition of the KMS-symmetry of an operator T; can be
expressed as a relation between T, and T}

h(TL*(a)*b) =h(a*T.(b)) = h((afé- oT,o aé-)(a)* b).

Using T, = Lxa, T} = (L¥ o S)x a and 04(a) = fir x ax fir, we
have
L*a:f_;*(L#os)*f;*a.
2 2

If L is hermitian, this reduces to

L(a)=co(Lxa)= (LoS)(f%*a*f_ )= (Lo R)(a).

1
2

Recall: S=Ro7;, R(a) = S(f% xa*f_1)
2

1
2
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KMS-symmetry

Dirichlet forms

Proposition

Let L € A’ be hermitian. Then

T, is self-adjoint iff Lo S =L.

=] = = = = DAl
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Dirichlet forms

Proposition
Let L € A’ be hermitian. Then

T, is self-adjoint

iff LoS=1L.
T, is KMS-symmetric

iff LoR=L.
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KMS-symmetry

Proposition
Let L € A’ be hermitian. Then

T, is self-adjoint iff Lo S =L.
T, is KMS-symmetric iff Lo R = L.

Remark
If L is a generating functional, then

» L+ Lo R is a generating functional (it is conditionally
positive!)

> Tii1or is KMS-symmetric.
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Relations between symmetry and KMS-symmetry

Dirichlet forms
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Relations between symmetry and KMS-symmetry

Theorem
For L € A’ the following are equivalent:

1. T; commutes with the modular group 0: Ty o0y =00 Ty,

2. L commutes with the Woronowicz characters: Lxf, = f, % L
for z € C,

3. Lis invariant under 7;: i.e. Lo7;, = L.
2 2

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups



KMS-Symmetry

Relations between symmetry and KMS-symmetry

Theorem
For L € A’ the following are equivalent:

1. Ty commutes with the modular group o: Ty ooy =00 Ty,

2. L commutes with the Woronowicz characters: Lxf, = f, % L
for z € C,

3. L is invariant under Ti: ie. Lo Ti = L.

Remark

» If L is symmetric, then L commutes with the Woronowicz
characters and is KMS-symmetric.

> If the algebra is of Kac type (52 =id), then R = S and the
symmetric and KMS-symmetric generators coincide.
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One more idea: ad-Invariance

Definition
The adjoint action of a Hopf algebra is defined by ad : A — A® A,

ad(a) = a(1)5(3(3)) ®ap), ac A.

Remarks

» The adjoint action is a left corepresentation, i.e. we have

(d®ad)oad = (A®id)oad,
(e®id)oad = id.

» ad is not an algebra homomorphism.
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ad-Invariance
Definition
A linear map T € Lin(A) is called ad-invariant, if
(id® T)oad =ado T.

A linear functional L € A’ is called ad-invariant, if

(id® L) oad = L1 4.

Remarks
» The counit € and the Haar state h are ad-invariant.
» For L € A’, T, is ad-invariant if and only if L is ad-invariant.

» If L. L' € A" are ad-invariant then L L’ is ad-invariant.
bl
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ad-Invariance

Denote by adp € Lin(.A) the linear map given by

ady = (h®id) o ad.

Properties

» L oady is ad-invariant for all L € A,
» L e A'is ad-invariant if and only if L = L o ady,.

» A functional L is ad-invariant iff it is of the form
L(u},f)) = ¢s0j, for some ¢ € C.
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ad-Invariance

Remarks

» If L is ad-invariant and hermitian, then L is symmetric if and
only if ¢ € R for all s € 7.

» L — Loady does not preserve the hermitianity, neither
positivity!

Example
Indeed, let L: SU,(2) — C

L(a) =€, L(a*):=e "

and zero otherwise.
Then L,q = L o ady, is ad-invariant but not hermitian.
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Dirichlet forms

From Lévy Processes to Dirichlet Forms...
What next?

Lévy process

—  Markov semigroup

=] = = = = DAl
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Dirichlet forms

From Lévy Processes to Dirichlet Forms...
What next?

Lévy process

—  Markov semigroup
—  Dirichlet form &
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Dirichlet forms

From Lévy Processes to Dirichlet Forms...
What next?

Lévy process

—  Markov semigroup
—  Dirichlet form &
— derivation 0
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From Lévy Processes to Dirichlet Forms...

What next?

Lévy process —— Markov semigroup
—  Dirichlet form &£
— derivation 0
—  Dirac operator D

Remark

The study of Dirichlet forms in the noncommutative setting of a
C* or von Neumann algebra (tracial case): S. Albeverio, R.
Hoegh-Krohn, J.-L. Sauvageot, E.B. Davies, J.M. Lindsay, S.
Goldstein, F. Cipriani, etc.
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From Lévy Processs to Dirichlet Forms...

Theorem
Let (T¢)r>0 be the Markov semigroup of a Lévy process on A with
generating functional L.

(a) (Tt)eo satisfies the quantum detailed balance condition, i.e.
we have

h(aT¢(b)) = h(Te(a)b)
for all t > 0 and all a,b € A, if and only if L is symmetric.
(b) (T¢)e>0 is KMS-symmetric if and only if L is KMS-symmetric.
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From Lévy Processes to Dirichlet Forms...

Let A be a coamenable compact quantum group and let L be a
generator of a Lévy process with the semigroup of states (¢¢)¢>0
on A. Then:

» There exists a one-to-one correspondence between weakly
continuous semigroup of states on A and weakly continuous
semigroup of states on A.

» The operator semigroup T; = (id ® ¢¢) o A extends to the
strongly continuous operator semigroup on A.

» There exists a closed, densely defined operator in A, which is
the closure of T;.
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Dirichlet forms

From Lévy Process to Dirichlet Form...

If L is a generating functional, then we can define

Ela] = h(a*o_

NI~

(Tw(a)),

ae A
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Symmetry

KMS-Symmetry

From Lévy Process to Dirichlet Form

ad-Invariance

Dirichlet forms

If L is a generating functional, then we can define

Ela] = h(a*U_é'(TL(a)))
Example: L(

ae A
Then

) = G50 on SUq4(2)
EluP] = h((uf)) o (Tu(ul))) =

J

[=] 5 - ) Q>
. e e e L
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Further directions...

Problems
» Find interesting explicit examples of symmetric or
KMS-symmetric generators on SUq4(n).

» Construct the related derivations and Dirac operators (need to
extend Cipriani & Sauvaveot's construction to the non-tracial
case).
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