Symmetries of Lévy Processes on compact quantum groups

Uwe Franz (Université de Franche-Comté)

joint work with: Anna Kula (Jagiellonian University & Université de Franche-Comté) Fabio Cipriani (Politecnico di Milano)

Bialgebras in Free Probability ESI, Wien, April 2011

Outline

Compact Quantum Groups

Noncommutative Lévy Processes

The "Commutative" part of $SU_q(n)$

Symmetry

KMS-Symmetry

ad-Invariance

Dirichlet forms

CQG

Compact Quantum Groups: definition

Definition (Woronowicz)

A **compact quantum group** is a pair (A, Δ) , where A is a unital C^* -algebra, $\Delta : A \to A \otimes A$ is a unital, *-homomorphism which is coassociative, i.e.

$$(\Delta \otimes \mathsf{id}_\mathsf{A}) \circ \Delta = (\mathsf{id}_\mathsf{A} \otimes \Delta) \circ \Delta$$

such that the quantum cancellation rules are satisfied

$$\overline{\operatorname{Lin}}((1 \otimes A)\Delta(A)) = \overline{\operatorname{Lin}}((A \otimes 1)\Delta(A)) = A \otimes A.$$

The Hopf *-algebra of "smooth" elements

CQG

A unital *-algebra $\mathcal A$ is called *-bialgebra if it is equipped with two *-homomorphisms $\Delta: \mathcal A \to \mathcal A \otimes \mathcal A$ (coproduct) and $\varepsilon: \mathcal A \to \mathbb C$ (counit) satisfying

$$(\mathrm{id}\otimes\Delta)\circ\Delta=(\Delta\otimes\mathrm{id})\circ\Delta,\quad (\mathrm{id}\otimes\varepsilon)\circ\Delta=(\varepsilon\otimes\mathrm{id})\circ\Delta=\mathrm{id}.$$

The Hopf *-algebra of "smooth" elements

CQG

A unital *-algebra $\mathcal A$ is called *-bialgebra if it is equipped with two *-homomorphisms $\Delta: \mathcal A \to \mathcal A \otimes \mathcal A$ (coproduct) and $\varepsilon: \mathcal A \to \mathbb C$ (counit) satisfying

$$(\mathrm{id}\otimes\Delta)\circ\Delta=(\Delta\otimes\mathrm{id})\circ\Delta,\quad (\mathrm{id}\otimes\varepsilon)\circ\Delta=(\varepsilon\otimes\mathrm{id})\circ\Delta=\mathrm{id}.$$

A *-bialgebra $\mathcal A$ is called a **Hopf** *-algebra if there exists a linear mapping $S:\mathcal A\to\mathcal A$ (antipode) such that $S\circ *\circ S\circ *=\mathrm{id}$ and

$$(S \otimes \mathrm{id}) \circ \Delta(a) = \varepsilon(a)\mathbf{1} = (\mathrm{id} \otimes S) \circ \Delta(a).$$

Unitary corepresentations

CQG

▶ *n*-dimensional unitary corepresentation of A : $U = (u_{jk})_{1 \le j,k \le n} \in M_n(A)$ a unitary such that for all $j,k = 1, \ldots, n$ we have

$$\Delta(u_{jk})=\sum_{p=1}^n u_{jp}\otimes u_{pk}.$$

- Let $(U^{(s)})_{s\in\mathcal{I}}$ be a complete family of mutually inequivalent irreducible unitary correpresentations of A
- ▶ The algebra of the "smooth" elements of A is defined as

$$\mathcal{A}=\operatorname{Lin}\{u_{jk}^{(s)}; s\in\mathcal{I}, 1\leq j, k\leq n_s\},\$$

where n_s is the dimension of $u^{(s)}$.

Unitary corepresentations

CQG

▶ *n*-dimensional unitary corepresentation of A : $U = (u_{jk})_{1 \le j,k \le n} \in M_n(A)$ a unitary such that for all $j,k=1,\ldots,n$ we have

$$\Delta(u_{jk})=\sum_{p=1}^n u_{jp}\otimes u_{pk}.$$

- Let $(U^{(s)})_{s\in\mathcal{I}}$ be a complete family of mutually inequivalent irreducible unitary correpresentations of A
- ▶ The algebra of the "smooth" elements of A is defined as

$$\mathcal{A}=\operatorname{Lin}\{u_{jk}^{(s)};s\in\mathcal{I},1\leq j,k\leq n_s\},\,$$

where n_s is the dimension of $u^{(s)}$.

 \mathcal{A} is a dense *-subalgebra of A, which is a Hopf *-algebra with $\varepsilon(u_{jk}^{(s)}) = \delta_{jk}$ and $S(u_{jk}^{(s)}) = (u_{kj}^{(s)})^*$.

Example $SU_q(2)$

CQG

Let $q \in [-1,0) \cup (0,1]$. The quantum group $SU_q(2)$ is the C^* -algebra generated by the coefficients of the matrix

$$U = \left(\begin{array}{cc} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{array}\right)$$

with the relations on α and γ that ensure $UU^*=U^*U=1$ and that the quantum determinant D(U)=1 and with the comultiplication

$$\Delta(\alpha) = \alpha \otimes \alpha + \gamma \otimes \gamma, \quad \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

Example $SU_q(2)$

The Hopf algebra ${\mathcal A}$ is given by

$$\mathcal{A} = *-\mathsf{Alg}\{\alpha, \gamma\} = \mathsf{Pol}(\alpha, \alpha^*, \gamma, \gamma^*),$$

 $\varepsilon(\alpha) = 1, \varepsilon(\gamma) = 0, \quad S(\alpha) = \alpha^*, S(\gamma) = -q\gamma.$

Example $SU_q(2)$

CQG

The Hopf algebra \mathcal{A} is given by

$$\mathcal{A} = * ext{-}\mathsf{Alg}\{lpha, \gamma\} = \mathsf{Pol}(lpha, lpha^*, \gamma, \gamma^*), \ arepsilon(lpha) = 1, arepsilon(\gamma) = 0, \quad S(lpha) = lpha^*, S(\gamma) = -q\gamma.$$

On the other hand, $\mathcal{A} = \text{Lin}\{u_{jk}^{(s)}; s \in \mathcal{I}, 1 \leq j, k \leq n_s\}$, where

$$\mathcal{I} = \frac{1}{2}\mathbb{N}, \ U^{(0)} = (\mathbf{1}), \ U^{(\frac{1}{2})} = U = \begin{pmatrix} \alpha & -q\gamma^* \\ \gamma & \alpha^* \end{pmatrix},$$

$$U^{(1)} = \begin{pmatrix} \alpha^2 & -q\sqrt{1+q^2}\gamma^*\alpha & q^2(\gamma^*)^2 \\ \sqrt{1+q^2}\gamma\alpha & 1 - (1+q^2)\gamma^*\gamma & -q\sqrt{1+q^2}\alpha^*\gamma^* \\ \gamma^2 & \sqrt{1+q^2}\alpha^*\gamma & (\alpha^*)^2 \end{pmatrix},$$

etc.

Example $SU_q(N)$

CQG

The quantum group $SU_q(N)$ is generated by the matrix elements of $U=[u_{ij}]_{i,j=1,\dots,N}$ satisfying the relations

$$u_{ij}u_{kj} = qu_{kj}u_{ij} \quad \text{for } i < k, \tag{1}$$

$$u_{ij}u_{il} = qu_{il}u_{ij} \quad \text{for } j < l, \tag{2}$$

$$u_{ij}u_{kl} = u_{kl}u_{ij} \quad \text{for } i < k, j > l, \tag{3}$$

$$u_{ij}u_{kl} = u_{kl}u_{ij} + q^{-1}(1 - q^2)u_{il}u_{kj}$$
 for $i < k, j < l$, (4)

with the additional requirement on the quantum determinant

$$D=D(U):=\sum_{\sigma\in S_n}(-q)^{i(\sigma)}u_{1,\sigma(1)}\ldots u_{n,\sigma(n)}=1.$$

The involution is determined by the relation $UU^* = U^*U = 1$.

Example $SU_q(N)$

We have

CQG

$$\mathcal{A} = *-\mathsf{Alg}\{u_{ij}; i, j = 1, \dots, N\}$$

$$\Delta(u_{jk}) = \sum_{p=1}^{n} u_{jp} \otimes u_{pk}, \quad \varepsilon(u_{jk}) = \delta_{jk}, \quad S(u_{jk}) = u_{jk}^*.$$

The matrix U is a corepresentation and the family of irreducible, inequivalent, unitary corepresentations is indexed by $(\frac{1}{2}\mathbb{N})^{N-1}$.

The Haar state

CQG

Notation: for $a \in A$ and $\xi, \xi' \in A'$

$$\xi \star \xi'(a) = (\xi \otimes \xi') \Delta(a)$$

$$\xi \star a = (\mathrm{id} \otimes \xi) \Delta(a)$$

$$a \star \xi = (\xi \otimes \mathrm{id}) \Delta(a)$$

Theorem (Woronowicz)

Let (A, Δ) be a compact quantum group. There exists unique state (called the **Haar measure**) h on A such that

$$a \star h = h \star a = h(a)I, \quad a \in A.$$

Note that, in general, h is not a trace!

Woronowicz characters

CQG

Theorem (Woronowicz)

Then there exists a unique family $(f_z)_{z\in\mathbb{C}}$ of linear multiplicative functionals on \mathcal{A} , called the **Woronowicz characters**, such that:

- 1. $f_z(\mathbf{1}) = 1$ for $z \in \mathbb{C}$ and $f_0 = \varepsilon$
- 2. $\mathbb{C} \ni z \mapsto f_z(a) \in \mathbb{C}$ is an entire holomorphic function.
- 3. $f_{z_1} \star f_{z_2} = f_{z_1+z_2}$ for any $z_1, z_2 \in \mathbb{C}$.
- 4. $f_z(S(a)) = f_{-z}(a)$ and $f_{\overline{z}}(a^*) = f_{-z}(a)$, for any $z \in \mathbb{C}$, $a \in A$.
- 5. $S^2(a) = f_{-1} \star a \star f_1$ for $a \in \mathcal{A}$.
- 6. $h(ab) = h(b(f_1 \star a \star f_1))$ for $a, b \in A$.

Woronowicz characters

CQG

Theorem (Woronowicz)

Then there exists a unique family $(f_z)_{z\in\mathbb{C}}$ of linear multiplicative functionals on \mathcal{A} , called the **Woronowicz characters**, such that:

- 1. $f_z(\mathbf{1}) = 1$ for $z \in \mathbb{C}$ and $f_0 = \varepsilon$
- 2. $\mathbb{C} \ni z \mapsto f_z(a) \in \mathbb{C}$ is an entire holomorphic function.
- 3. $f_{z_1} \star f_{z_2} = f_{z_1+z_2}$ for any $z_1, z_2 \in \mathbb{C}$.
- 4. $f_z(S(a)) = f_{-z}(a)$ and $f_{\overline{z}}(a^*) = \overline{f_{-z}(a)}$, for any $z \in \mathbb{C}$, $a \in A$.
- 5. $S^2(a) = f_{-1} \star a \star f_1$ for $a \in \mathcal{A}$.
- 6. $h(ab) = h(b(f_1 \star a \star f_1))$ for $a, b \in A$.

Example for
$$SU_q(2)$$
: $f_z(u_{jk}^{(s)}) = q^{z(j+k)}\delta_{jk}$

Decomposition of the antipode

Theorem (Woronowicz):

The closure \overline{S} of the antipode S admits the "polar" decomposition: $\overline{S} = R \circ \tau_{\frac{i}{S}},$

where

CQG

- $au_{\frac{t}{2}}$ is the analytic generator of a one parameter group $(au_t)_{t\in\mathbb{R}}$ of *-automorphisms of the C^* -algebra A
- ▶ R is a linear antimultiplicative norm preserving involution, commuting with the adjoint, that commutes with the $(\tau_t)_{t \in \mathbb{R}}$, i.e. $\tau_t \circ R = R \circ \tau_t$ for all $t \in \mathbb{R}$.

From the proof:

$$\tau_t(a) = f_{it} \star a \star f_{-it},$$

$$R(a) = S(f_{\frac{1}{2}} \star a \star f_{-\frac{1}{2}})$$

Noncommutative Lévy Processes

Let \mathcal{A} be a *-bialgebra and let (\mathcal{P}, Φ) be a noncommutative probability space.

- ▶ a **random variable** on \mathcal{A} over (\mathcal{P}, Φ) is a *-algebra homomorphism from \mathcal{A} into the space (\mathcal{P}, Φ)
- ▶ the **distribution** of the random variable $j: A \rightarrow P$ is the state $\varphi_j = \Phi \circ j$
- ▶ a quantum stochastic process on \mathcal{A} is a family of random variables $(j_t)_{t\in J}$ on \mathcal{A} indexed by a set J
- ▶ the **convolution product** of $j_1, j_2 : \mathcal{A} \to \mathcal{P}$ is the random variable $j_1 \star j_2 = m_{\mathcal{P}} \circ (j_1 \otimes j_2) \circ \Delta$, where $m_{\mathcal{P}}$ denotes the product in \mathcal{P} .



Noncommutative Lévy Processes

A quantum stochastic process $(j_{st})_{0 \le s \le t \le T}$ $(T \in \mathbb{R}_+ \cup \{\infty\})$ on a *-bialgebra \mathcal{A} over (\mathcal{P}, Φ) is called **Lévy process** if it satisfies:

(increment property)

$$j_{rs} \star j_{st} = j_{rt}$$
 for all $0 \le r \le s \le t \le T$

and $j_{tt} = \varepsilon \mathbf{1}_{\mathcal{P}}$ for all $0 \le t \le T$,

▶ the increments (j_{st}) are (tensor) **independent**, i.e. for disjoint intervals $(t_i, s_i]$

$$\Phi(j_{s_1t_1}(a_1)...j_{s_nt_n}(a_n)) = \Phi(j_{s_1t_1}(a_1))...\Phi(j_{s_nt_n}(a_n))$$

- and $[j_{s_i,t_i}(a_1),j_{s_j,t_j}(a_2)] = 0$ for $i \neq j$,
- ▶ the increments (j_{st}) are **stationary**, i.e. $\varphi_{st} = \Phi \circ j_{st}$ depends only on t s,
- ► (weak continuity) j_{st} converges to j_{ss} in distribution for t \ s.

4日 → 4周 → 4 = → 4 = → 9 Q P

The convolution semigroup and the generator of a NC Lévy process

The marginal distributions $\varphi_{s-t} := \varphi_{st} = \Phi \circ j_{st}$ of a Lévy process $(j_{st})_{0 \le s \le t}$ form a convolution semigroup of states, i.e.

$$ightharpoonup arphi_0 = arepsilon, \ arphi_s \star arphi_t = arphi_{s+t}, \ \lim_{t \to 0} arphi_t(b) = arepsilon(b) \ ext{for all} \ b \in \mathcal{A},$$

$$ightharpoonup arphi_t(\mathbf{1}) = 1$$
, $arphi_t(b^*b) \geq 0$ for all $b \in \mathcal{A}$ and $t \geq 0$.

There exists a unique functional $L: A \to \mathbb{C}$, called the **generating** functional, such that

$$\varphi_t = \exp_{\star} tL$$
 and $L = \frac{d}{dt} \varphi_t \big|_{t=0}$.

Lévy Processes and Markov semigroup

Given a convolution semigroup of states $(\varphi_t)_{t\geq 0}$, we can define a semigroup of operators

$$T_t = (\mathrm{id} \otimes \varphi_t) \circ \Delta, \quad t \geq 0.$$

Its **infinitesimal generator** $G: \mathcal{A} \to \mathcal{A}$ is the convolution operator associated to the generating functional L, i.e.

$$G(a) = (\mathrm{id} \otimes L) \circ \Delta(a) = L \star a.$$

Notation: $G = T_L$.

Lévy Processes and Markov semigroup

Given a convolution semigroup of states $(\varphi_t)_{t\geq 0}$, we can define a semigroup of operators

$$T_t = (\mathrm{id} \otimes \varphi_t) \circ \Delta, \quad t \geq 0.$$

Its **infinitesimal generator** $G: \mathcal{A} \to \mathcal{A}$ is the convolution operator associated to the generating functional L, i.e.

$$G(a) = (\mathrm{id} \otimes L) \circ \Delta(a) = L \star a.$$

Notation: $G = T_L$.

Remark

 $G: \mathcal{A} \to \mathcal{A}$ is a convolution operator if and only if

 $\Delta \circ G = (\mathrm{id} \otimes G) \circ \Delta.$

In this case $L(a) = \varepsilon \circ G(a)$.

Characterisation of Generators of Convolution Semigroups

Theorem (Schoenberg correspondence):

The functional $L: \mathcal{A} \to \mathbb{C}$ is a generating functional of a convolution semigroup of states if and only if L is

- ▶ hermitian, i.e. $L(b^*) = L(b)$,
- ▶ conditionally positive, i.e. $L(b^*b) \ge 0$ provided $\varepsilon(b) = 0$,
- ▶ and L(1) = 0.

Lévy Processes and the Generators

noncommutative Lévy process

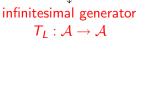
hermitian, cond. positive

$$L: \mathcal{A} \to \mathbb{C}$$
, s.t. $L(\mathbf{1}) = 0$

semigroup of Markov operators $(T_t)_{t>0}$ infinitesimal generator $T_I: \mathcal{A} \to \mathcal{A}$

Lévy Processes and the Generators

noncommutative Lévy process $(j_{st})_{0 \le s \le t}$ convolution semigroup semigroup of of states $(\varphi_t)_{t>0}$ Markov operators $(T_t)_{t>0}$ generating functional $L: \mathcal{A} \to \mathbb{C}$ hermitian, cond. positive $L: \mathcal{A} \to \mathbb{C}$, s.t. $L(\mathbf{1}) = 0$



Aim of the project: study the noncommutative **geometry** of a quantum group via its Lévy processes

Ideas / Problems / Questions :

- Which processes (and their generators) give interesting information about the nc geometry?
- Are nc Brownian motions (i.e. gaussian generators) useful for that?
- ▶ What other conditions (symmetries) on the generators would be appropriate?

Aim of the project: study the noncommutative **geometry** of a quantum group via its Lévy processes

Ideas / Problems / Questions :

- Which processes (and their generators) give interesting information about the nc geometry?
- Are nc Brownian motions (i.e. gaussian generators) useful for that?
- ▶ What other conditions (symmetries) on the generators would be appropriate?
- Extend the theory of Dirichlet forms associated to Markov semigroups and the construction of their derivations to the non-tracial case (cf. Cipriani& Sauvageot)

Let

$$\begin{array}{rcl} \mathcal{K}_1 & = & \ker \varepsilon, \\ \mathcal{K}_2 & = & \operatorname{Lin} \left\{ a_1 a_2 : a_1, a_2 \in \ker \varepsilon \right\}, \\ \mathcal{K}_n & = & \operatorname{Lin} \left\{ a_1 a_2 \dots a_n : a_1, a_2, \dots, a_n \in \ker \varepsilon \right\}, \\ \mathcal{K}_{\infty} & = & \bigcap_{n \geq 1} \mathcal{K}_n. \end{array}$$

Description of K_{∞} for $SU_q(n)$

- $\blacktriangleright u_{ij}, u_{ij}^* \in K_{\infty} \text{ for } i \neq j$
- $ightharpoonup u_{ii}u_{jj} = u_{jj}u_{ii}, \ u_{ii}u_{ij}^* = u_{ji}^*u_{ii} \ (\text{modulo } K_{\infty}, \text{ for } i \neq j)$
- $lacksquare u_{jj}u_{jj}^*=u_{jj}^*u_{jj}=1 \ (\mathsf{modulo}\ \mathcal{K}_\infty)$
- $u_{11} \dots u_{nn} = 1 \pmod{K_{\infty}}$

Description of K_{∞} for $SU_q(n)$

- $\blacktriangleright u_{ij}, u_{ii}^* \in K_{\infty} \text{ for } i \neq j$
- $\blacktriangleright u_{ii}u_{jj} = u_{jj}u_{ii}, \ u_{ii}u_{jj}^* = u_{jj}^*u_{ii} \ (\text{modulo } K_{\infty}, \text{ for } i \neq j)$
- lacksquare $u_{jj}u_{jj}^*=u_{jj}^*u_{jj}=1$ (modulo K_{∞})
- $ightharpoonup u_{11}\dots u_{nn}=1 \ (\mathsf{modulo}\ \mathcal{K}_\infty)$

Theorem

The ideal K_{∞} is also a coideal in \mathcal{A} , \mathcal{A}/K_{∞} is a *-bialgebra and

$$\mathcal{A}/\mathcal{K}_{\infty}\cong\mathbb{C}(\mathbb{T}^{n-1}).$$

All processes for which $L|_{K_{\infty}}=0$ are isomorphic to processes on the (n-1)-dimensional torus.

Definition

A generator L is called a **Gaussian** generator if $L|_{K_3}=0$.

Observation

The gaussian processes on $SU_q(n)$ encode the structure of (n-1)-dimensional torus, i.e. they give no information on the **noncommutative** geometry of $SU_q(n)$.

For $SU_q(2)$ this was shown by M. Schürmann and M. Skeide'1998.

We shall consider the inner product induced by the Haar state h

$$\langle a,b\rangle := h(a^*b).$$

Recall: each generator L of a Lévy process induces the operator

$$T_L(a) = L \star a = (\mathrm{id} \otimes L) \circ \Delta(a), \quad a \in \mathcal{A}.$$

Proposition

Each operator $T_L: \mathcal{A} \to \mathcal{A}$ admits unique adjoint, i.e. there exists a unique linear map $T_L^{\star}: \mathcal{A} \to \mathcal{A}$ such that

$$h(a^*T_L(b)) = h(T_L^*(a)^*b)$$

for all $a, b \in \mathcal{A}$.

Symmetric generators on quantum groups

We say that a generating functional L is symmetric if the operator T_L is self-adjoint, i.e. if

$$h(a^*T_L(b)) = h(T_L(a)^*b), \quad a, b \in A.$$

 $(\rightarrow$ **GNS**-symmetry).

Symmetric generators on quantum groups

We say that a generating functional L is symmetric if the operator T_L is self-adjoint, i.e. if

$$h(a^*T_L(b)) = h(T_L(a)^*b), \quad a, b \in A.$$

 $(\rightarrow$ **GNS**-symmetry).

Question:

For which generators L of Lévy processes the operator T_L is self-adjoint?

One can show that

$$T_L^\star = T_{L^\# \circ S}, \quad \text{where } L^\#(a) = \overline{L(a^*)},$$

therefore, if L is hermitian, then $L^{\#} = L$.

Proposition:
$$T_L = T_L^*$$
 iff $L = L \circ S$

One can show that

$$T_L^{\star} = T_{L^{\#} \circ S}, \quad \text{where } L^{\#}(a) = \overline{L(a^*)},$$

therefore, if L is hermitian. then $L^{\#} = L$.

Proposition:
$$T_L = T_L^*$$
 iff $L = L \circ S$

Remark

A hermitian functional L is symmetric iff the matrices $L(U^{(s)})$ are hermitian:

$$S(u_{jk}^{(s)}) = (u_{kj}^{(s)})^* \Rightarrow L(u_{jk}^{(s)}) = (L \circ S)(u_{jk}^{(s)}) = L((u_{kj}^{(s)})^*) = \overline{L(u_{kj}^{(s)})}.$$

Examples

Let

$$L(u_{jk}^{(s)})=c_s\delta_{jk}.$$

Then L is symmetric for any family $(c_s)_{s\in\mathcal{I}}$ of real numbers.

Symmetric generators

Examples

Let

$$L(u_{jk}^{(s)})=c_s\delta_{jk}.$$

Then L is symmetric for any family $(c_s)_{s\in\mathcal{I}}$ of real numbers.

Example in case of $SU_q(2)$

If L is symmetric, then $L(u_{jk}^{(s)})=c_{s,j}\delta_{jk}$ with $c_{j,s}\in\mathbb{R}$. If, moreover, L is hermitian, then $c_{j,s}=c_{-j,s}$.

Symmetric generators

Examples

Let

$$L(u_{jk}^{(s)})=c_s\delta_{jk}.$$

Then L is symmetric for any family $(c_s)_{s\in\mathcal{I}}$ of real numbers.

Example in case of $SU_q(2)$

If
$$L$$
 is symmetric, then $L(u_{jk}^{(s)})=c_{s,j}\delta_{jk}$ with $c_{j,s}\in\mathbb{R}$.
 If, moreover, L is hermitian, then $c_{j,s}=c_{-j,s}$.
 (follows from $S^2(u_{jk}^{(s)})=q^{2(j-k)}u_{jk}^{(s)}$ and $(u_{jj}^{(s)})^*=u_{-j,-j}^{(s)}$)

Symmetric generators

Examples

Let

$$L(u_{jk}^{(s)})=c_s\delta_{jk}.$$

Then L is symmetric for any family $(c_s)_{s\in\mathcal{I}}$ of real numbers.

Example in case of $SU_q(2)$

If
$$L$$
 is symmetric, then $L(u_{jk}^{(s)})=c_{s,j}\delta_{jk}$ with $c_{j,s}\in\mathbb{R}$.
 If, moreover, L is hermitian, then $c_{j,s}=c_{-j,s}$.
 (follows from $S^2(u_{jk}^{(s)})=q^{2(j-k)}u_{jk}^{(s)}$ and $(u_{jj}^{(s)})^*=u_{-j,-j}^{(s)}$)

Problem

For which c_s , L is conditionally positive?

Problem: for which c_s is $LA \to \mathbb{C}$ with $L(u_{jk}^{(s)}) = c_s \delta_{jk}$ is cond. positive?

Problem: for which c_s is $LA \to \mathbb{C}$ with $L(u_{jk}^{(s)}) = c_s \delta_{jk}$ is cond. positive?

Idea: use the subalgebra spanned by the characters (traces) of irreducible unitary corepresentations.

for $SU_q(2)$ (works more generally for q-deformations \mathbb{G}_g of compact simple Lie groups)

- ▶ $a \in \mathcal{A}$ positive $\Rightarrow \varphi_a(b) := h\left(\left(f_{-\frac{1}{2}} \star a \star f_{-\frac{1}{2}}\right)b\right)$ positive
- lacktriangleright The subalgebra \mathcal{A}_0 spanned by traces of the coreps does not depend on q

for $SU_q(2)$ (works more generally for q-deformations \mathbb{G}_g of compact simple Lie groups)

- ▶ $a \in \mathcal{A}$ positive $\Rightarrow \varphi_a(b) := h\left(\left(f_{-\frac{1}{2}} \star a \star f_{-\frac{1}{2}}\right)b\right)$ positive
- lacktriangleright The subalgebra \mathcal{A}_0 spanned by traces of the coreps does not depend on q
- ▶ If $a = \sum_s n_s^2 a_s \chi_s \in \mathcal{A}_0$ (with $\chi_s = \frac{1}{n_s} \sum_{k=-s}^s u_{kk}^{(s)}$), then

$$\varphi_{\mathsf{a}}(u_{jk}^{(\mathsf{s})}) = \frac{\mathsf{a}_{\mathsf{s}} \mathsf{n}_{\mathsf{s}}}{\mathsf{D}_{\mathsf{s}}} \delta_{jk},$$

where D_s is the quantum dimension of $U^{(s)}$, $D_s = q^{-2s} \frac{1-q^{2s}}{1-q^2}$.

for $SU_q(2)$ (works more generally for q-deformations \mathbb{G}_g of compact simple Lie groups)

- ▶ $a \in \mathcal{A}$ positive $\Rightarrow \varphi_a(b) := h\left((f_{-\frac{1}{2}} \star a \star f_{-\frac{1}{2}})b\right)$ positive
- lacktriangleright The subalgebra \mathcal{A}_0 spanned by traces of the coreps does not depend on q
- ▶ If $a = \sum_s n_s^2 a_s \chi_s \in \mathcal{A}_0$ (with $\chi_s = \frac{1}{n_s} \sum_{k=-s}^s u_{kk}^{(s)}$), then

$$\varphi_{\mathsf{a}}(u_{jk}^{(\mathsf{s})}) = \frac{\mathsf{a}_{\mathsf{s}} \mathsf{n}_{\mathsf{s}}}{\mathsf{D}_{\mathsf{s}}} \delta_{jk},$$

where D_s is the quantum dimension of $U^{(s)}$, $D_s = q^{-2s} \frac{1-q^{2s}}{1-q^2}$.

▶ If (a_s) are s.t. a is positive for SU(2) (classical group), then φ_a is positive and $L := \varphi_a - \varphi_a(\mathbf{1})\varepsilon$ is conditionally positive.

Definition

Let $\alpha:=\{\alpha_t:t\in\mathbb{R}\}$ be a strongly continuous group of automorphisms of a C^* -algebra A and $\beta\in\mathbb{R}$. A state ω is said to be a (α,β) -KMS state if it is α -invariant and if the following KMS-condition holds true:

$$\omega(\mathsf{a}\alpha_{\mathsf{i}\beta}(\mathsf{b})) = \omega(\mathsf{b}\mathsf{a})$$

for all a, b in a norm dense, α -invariant *-subalgebra of A.

- ▶ KMS states corresponding to $\beta = 0$ are just the traces over A.
- ightharpoonup KMS states \sim equilibrium of quantum statistical systems

'Commutative' part

Let $\alpha:=\{\alpha_t:t\in\mathbb{R}\}$ be a strongly continuous group of automorphisms of a C^* -algebra A and ω be a fixed (α,β) -KMS state, for some $\beta\in\mathbb{R}$.

Definition of KMS-symmetry

An operator $\Phi:A\to A$ is said to be (α,β) -KMS symmetric with respect to ω if

$$\omega(b\Phi(a)) = \omega(\alpha_{-\frac{i\beta}{2}}(a)\Phi(\alpha_{+\frac{i\beta}{2}}(b))$$

for all a, b in a norm dense, α -invariant *-subalgebra B of A.

KMS-state on quantum groups

Theorem (Woronowicz):

The formula

$$\sigma_t(a) = f_{it} \star a \star f_{it}$$

defines a one parameter group of modular automorphisms of $\mathcal A$ and the Haar measure h is a $(\sigma,-1)$ -KMS state:

$$h(ab) = h(b(f_1 \star a \star f_1)) = h(b\sigma_i(a)), \quad a, b \in \mathcal{A}.$$

Question:

For which generators L of Lévy processes the operator T_L is KMS-symmetric?

The condition of the KMS-symmetry of an operator T_L can be expressed as a relation between T_L and T_L^* :

$$h(T_L^*(a)^*b) = h(a^*T_L(b)) = h((\sigma_{-\frac{i}{2}} \circ T_L \circ \sigma_{\frac{i}{2}})(a)^*b).$$

The condition of the KMS-symmetry of an operator T_L can be expressed as a relation between T_L and T_L^* :

$$h(T_L^{\star}(a)^*b) = h(a^*T_L(b)) = h((\sigma_{-\frac{i}{2}} \circ T_L \circ \sigma_{\frac{i}{2}})(a)^*b).$$

Using $T_L = L \star a$, $T_L^{\star} = (L^{\#} \circ S) \star a$ and $\sigma_t(a) = f_{it} \star a \star f_{it}$, we have

$$L \star a = f_{-\frac{1}{2}} \star (L^{\#} \circ S) \star f_{\frac{1}{2}} \star a.$$

The condition of the KMS-symmetry of an operator T_L can be expressed as a relation between T_L and T_L^* :

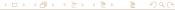
$$h(T_L^{\star}(a)^*b) = h(a^*T_L(b)) = h((\sigma_{-\frac{i}{2}} \circ T_L \circ \sigma_{\frac{i}{2}})(a)^*b).$$

Using $T_L = L \star a$, $T_L^{\star} = (L^{\#} \circ S) \star a$ and $\sigma_t(a) = f_{it} \star a \star f_{it}$, we have

$$L \star a = f_{-\frac{1}{2}} \star (L^{\#} \circ S) \star f_{\frac{1}{2}} \star a.$$

If *L* is hermitian, this reduces to

$$L(a) = \varepsilon \circ (L \star a) = (L \circ S)(f_{\frac{1}{2}} \star a \star f_{-\frac{1}{2}})$$



The condition of the KMS-symmetry of an operator T_L can be expressed as a relation between T_L and T_L^* :

$$h(T_L^{\star}(a)^*b) = h(a^*T_L(b)) = h((\sigma_{-\frac{i}{2}} \circ T_L \circ \sigma_{\frac{i}{2}})(a)^*b).$$

Using $T_L = L \star a$, $T_L^{\star} = (L^{\#} \circ S) \star a$ and $\sigma_t(a) = f_{it} \star a \star f_{it}$, we have

$$L \star a = f_{-\frac{1}{2}} \star (L^{\#} \circ S) \star f_{\frac{1}{2}} \star a.$$

If *L* is hermitian, this reduces to

$$L(a) = \varepsilon \circ (L \star a) = (L \circ S)(f_{\frac{1}{2}} \star a \star f_{-\frac{1}{2}}) = (L \circ R)(a).$$

Recall:
$$\overline{S} = R \circ \tau_{\frac{i}{2}}$$
, $R(a) = S(f_{\frac{1}{2}} \star a \star f_{-\frac{1}{2}})$

Proposition

Let $L \in \mathcal{A}'$ be hermitian. Then

 T_L is self-adjoint iff $L \circ S = L$.

Proposition

Let $L \in \mathcal{A}'$ be hermitian. Then

$$T_L$$
 is self-adjoint iff $L \circ S = L$.
 T_L is KMS-symmetric iff $L \circ R = L$.

Proposition

Let $L \in \mathcal{A}'$ be hermitian. Then

$$T_L$$
 is self-adjoint iff $L \circ S = L$.
 T_L is KMS-symmetric iff $L \circ R = L$.

Remark

If L is a generating functional, then

- ▶ $L + L \circ R$ is a generating functional (it is conditionally positive!)
- $ightharpoonup T_{L+L\circ R}$ is KMS-symmetric.

Relations between symmetry and KMS-symmetry

Relations between symmetry and KMS-symmetry

Theorem

For $L \in \mathcal{A}'$ the following are equivalent:

- 1. T_L commutes with the modular group σ : $T_L \circ \sigma_t = \sigma_t \circ T_L$,
- 2. L commutes with the Woronowicz characters: $L \star f_z = f_z \star L$ for $z \in \mathbb{C}$,
- 3. L is invariant under $\tau_{\frac{i}{2}}$: i.e. $L \circ \tau_{\frac{i}{2}} = L$.

Relations between symmetry and KMS-symmetry

Theorem

For $L \in \mathcal{A}'$ the following are equivalent:

- 1. T_L commutes with the modular group σ : $T_L \circ \sigma_t = \sigma_t \circ T_L$,
- 2. L commutes with the Woronowicz characters: $L\star f_z=f_z\star L$ for $z\in\mathbb{C}$,
- 3. L is invariant under $\tau_{\frac{i}{2}}$: i.e. $L \circ \tau_{\frac{i}{2}} = L$.

Remark

- ▶ If *L* is symmetric, then *L* commutes with the Woronowicz characters and is KMS-symmetric.
- ▶ If the algebra is of Kac type ($S^2 = id$), then R = S and the symmetric and KMS-symmetric generators coincide.

One more idea: ad-Invariance

Definition

The *adjoint action* of a Hopf algebra is defined by $ad : A \to A \otimes A$,

$$\operatorname{ad}(a) = a_{(1)}S(a_{(3)}) \otimes a_{(2)}, \quad a \in \mathcal{A}.$$

Remarks

▶ The adjoint action is a left corepresentation, i.e. we have

$$(id \otimes ad) \circ ad = (\Delta \otimes id) \circ ad,$$

 $(\varepsilon \otimes id) \circ ad = id.$

▶ ad is not an algebra homomorphism.

ad-Invariance

Definition

A linear map $T \in \operatorname{Lin}(\mathcal{A})$ is called ad -invariant, if

$$(\mathrm{id}\otimes T)\circ\mathrm{ad}=\mathrm{ad}\circ T.$$

A linear functional $L \in \mathcal{A}'$ is called ad-*invariant*, if

$$(\mathrm{id}\otimes L)\circ\mathrm{ad}=L\mathbf{1}_{\mathcal{A}}.$$

Remarks

- ▶ The counit ε and the Haar state h are ad-invariant.
- ▶ For $L \in \mathcal{A}'$, T_L is ad-invariant if and only if L is ad-invariant.
- ▶ If $L, L' \in \mathcal{A}'$ are ad-invariant then $L \star L'$ is ad-invariant.

ad-Invariance

Denote by $\mathrm{ad}_h \in \mathrm{Lin}(\mathcal{A})$ the linear map given by

$$\mathrm{ad}_h = (h \otimes \mathrm{id}) \circ \mathrm{ad}.$$

Properties

- ▶ $L \circ ad_h$ is ad-invariant for all $L \in \mathcal{A}'$.
- ▶ $L \in \mathcal{A}'$ is ad -invariant if and only if $L = L \circ \operatorname{ad}_h$.
- ▶ A functional L is ad-invariant iff it is of the form $L(u_{jk}^{(s)}) = c_s \delta_{jk}$ for some $c_s \in \mathbb{C}$.

ad-Invariance

Remarks

- ▶ If *L* is ad-invariant and hermitian, then *L* is symmetric if and only if $c_s \in \mathbb{R}$ for all $s \in \mathcal{I}$.
- L → L ∘ ad_h does not preserve the hermitianity, neither positivity!

Example

Indeed, let $L:SU_q(2) \to \mathbb{C}$

$$L(\alpha) := e^{it}, \quad L(\alpha^*) := e^{-it}$$

and zero otherwise.

Then $L_{ad} = L \circ ad_h$ is ad-invariant but not hermitian.

What next?

What next?

 $\begin{array}{ccc} \mathsf{L\acute{e}vy} \ \mathsf{process} & \longrightarrow & \mathsf{Markov} \ \mathsf{semigroup} \\ & \longrightarrow & \mathsf{Dirichlet} \ \mathsf{form} \ \mathcal{E} \end{array}$

What next?

 $\begin{array}{ccc} \mathsf{L\acute{e}vy} \ \mathsf{process} & \longrightarrow & \mathsf{Markov} \ \mathsf{semigroup} \\ \longrightarrow & \mathsf{Dirichlet} \ \mathsf{form} \ \mathcal{E} \\ \longrightarrow & \mathsf{derivation} \ \partial \end{array}$

What next?

 $\begin{array}{cccc} \mathsf{L\acute{e}vy\ process} & \longrightarrow & \mathsf{Markov\ semigroup} \\ & \longrightarrow & \mathsf{Dirichlet\ form\ } \mathcal{E} \\ & \longrightarrow & \mathsf{derivation\ } \partial \\ & \longrightarrow & \mathsf{Dirac\ operator\ } D \\ \end{array}$

Remark

The study of Dirichlet forms in the noncommutative setting of a C^* or von Neumann algebra (tracial case): S. Albeverio, R. Hoegh-Krohn, J.-L. Sauvageot, E.B. Davies, J.M. Lindsay, S. Goldstein, F. Cipriani, etc.

Theorem

Let $(T_t)_{t\geq 0}$ be the Markov semigroup of a Lévy process on \mathcal{A} with generating functional L.

(a) $(T_t)_{t\geq 0}$ satisfies the *quantum detailed balance* condition, i.e. we have

$$h(aT_t(b)) = h(T_t(a)b)$$

for all $t \ge 0$ and all $a, b \in A$, if and only if L is symmetric.

(b) $(T_t)_{t\geq 0}$ is KMS-symmetric if and only if L is KMS-symmetric.

Let A be a coamenable compact quantum group and let L be a generator of a Lévy process with the semigroup of states $(\varphi_t)_{t\geq 0}$ on A. Then:

- ▶ There exists a one-to-one correspondence between weakly continuous semigroup of states on \mathcal{A} and weakly continuous semigroup of states on \mathcal{A} .
- ▶ The operator semigroup $T_t = (id \otimes \varphi_t) \circ \Delta$ extends to the strongly continuous operator semigroup on A.
- ▶ There exists a closed, densely defined operator in A, which is the closure of T_L .

If L is a generating functional, then we can define

$$\mathcal{E}[a] = h(a^* \sigma_{-\frac{i}{2}}(T_L(a))), \qquad a \in \mathcal{A}.$$

If L is a generating functional, then we can define

$$\mathcal{E}[a] = h(a^*\sigma_{-\frac{i}{2}}(T_L(a))), \qquad a \in \mathcal{A}.$$

Example:
$$L(u_{jk}^{(s)}) = c_s \delta_{jk}$$
 on $SU_q(2)$

Then

$$\mathcal{E}[u_{jk}^{(s)}] = h((u_{jk}^{(s)})^* \sigma_{-\frac{i}{2}}(T_L(u_{jk}^{(s)}))) = \frac{c_s}{D_s} q^{k-j}.$$

Further directions...

Problems

- Find interesting explicit examples of symmetric or KMS-symmetric generators on $SU_q(n)$.
- Construct the related derivations and Dirac operators (need to extend Cipriani & Sauvaveot's construction to the non-tracial case).

NC Lévy Processes 'Commutative' part Symmetry KMS-Symmetry ad-Invariance Dirichlet forms

References

- ► F. Cipriani, *Dirichlet Forms on Noncommutative Spaces* in Lecture Notes in Math. 1954, Springer 2008.
- ▶ U. Franz, Levy Processes on Quantum Groups and Dual Groups in Lecture Notes in Math. 1866, Springer 2006.
- M. Schürmann, White noise on Bialgebras, Lecture Notes in Math. 1544, Springer 1993.
- M. Schürmann, M. Skeide, Infinitesimal generators on the quantum group $SU_q(2)$, $IDAQP\ 1(4)\ (1998)$, 573598.
- ► S. L. Woronowicz, *Compact Quantum Groups*, Les Houches, Session LXIV, 1995, Quantum Symmetries, Elsevier 1998.

