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E(2) versus simplified E£(2)

Double covering:

where u = v2 and m = vn.
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E(2) versus simplified E£(2)

Double covering:

where u = v2 and m = vn.

COMMUTATION RELATIONS

v is unitary u is unitary

n is normal mm* = ¢*>m*m
Sp|n| C ¢* U {0} Sp|m| C ¢* U {0}

vnv* = gn umu* = g°m
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Quantised complex plane

Let g be the deformation parameter: 0 < g < 1. We set

C' ={y:hleq”ui{o}}

T
N

-
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Special function

We shall use the following function:

C'syr— Fy(y)e St
H 1 i sz:yy for Y 7& _q_2k>
Fo(v) = *°
—1 otherwise.

Then F, is a continuous function: F, € C(C").
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Commutation relations versus Operator domains

Let CR(r,s,...,w) be commutation relations imposed on N
operators (symbols) r,s,..., w. Then for any Hilbert space H
one may consider the set of all N-tuples of closed operators
satisfying the relations:

Df ={(r,s...,w) €Cj: CR(r,s,...,w)}

We say that DR is an operator domain corresponding to the
commutation relations CR. Mathematically operator domains
are concrete topological W*-categories.
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Concrete topological W*-categories
pPOlog g

@ Objects are N-tuples of operators. Each object r is
anchored to a Hilbert space where the operators act. For
each Hilbert space H the objects anchored to H form a
set Dy.
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Concrete topological W*-categories
pPOlog g

@ Objects are N-tuples of operators. Each object r is
anchored to a Hilbert space where the operators act. For
each Hilbert space H the objects anchored to H form a
set Dy.

@ Morphisms are intertwining operators. For any r € Dy,
and s € Dy,, Mor(r,s) is a weakly closed linear subspace
of B(H1,H,). Composition of morphisms is the
composition of intertwinners. Moreover

(m € Mor(r,s)) = (m* € Mor(s, r))
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Concrete topological W*-categories
pPOlog g

@ Objects are N-tuples of operators. Each object r is
anchored to a Hilbert space where the operators act. For
each Hilbert space H the objects anchored to H form a
set Dy.

@ Morphisms are intertwining operators. For any r € Dy,
and s € Dy,, Mor(r,s) is a weakly closed linear subspace
of B(H1,H,). Composition of morphisms is the
composition of intertwinners. Moreover

(m € Mor(r,s)) = (m* € Mor(s, r))
@ D is complete and closed with respect to the natural

topology.
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Completeness

In brief, the concrete W*-category D is complete if it is closed
under unitary equivalence, direct sums and passing to a
subobject.
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Completeness

In brief, the concrete W*-category D is complete if it is closed
under unitary equivalence, direct sums and passing to a
subobject. More precisely the following statement holds:

Consider any family of objects ry € Dy, and any family of
operators my € B(H,H,) (where H is a Hilbert space and \
runs over an index set \) such that

ﬂ kermy = {0} and mym} € Mor(ry, ryv)
AeA

for all \, N € N. Then there exists unique r € Dy, such that
my € Morx(r, r\) for all A € A.
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Natural topology

Definition (z-transform)

For any closed operator r acting on a Hilbert space H we set

z=r(l+rr) V2.
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Natural topology

Definition (z-transform)

For any closed operator r acting on a Hilbert space H we set

zo=r(l+rr) 2.

We say that a sequence r, € Cy of closed operators is
converging to r € Cy if

lim ||z, x —zx|| =0
nli_>n;o ’ z; X — zj‘x“ =0

for any x € H
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Natural topology

Definition (z-transform)

For any closed operator r acting on a Hilbert space H we set

zo=r(l+rr) 2.

We say that a sequence r, € Cy of closed operators is
converging to r € Cy if

lim ||z, x —zx|| =0
nli_>n;o ’ z; X — z/x | =0

for any x € H

-

With this topology, D is closed in CJ¥ for each Hilbert space
H.
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Operator functions

In particular one may consider the empty set of relations impo-
sed on one symbol. The operator domain corresponding to such
relations coincides with the category C of closed operators.
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Operator functions

In particular one may consider the empty set of relations impo-
sed on one symbol. The operator domain corresponding to such
relations coincides with the category C of closed operators.

Definition

We say that F is an operator function defined on an operator
domain D if for any Hilbert space H,

Dy >5r— F(r) € Cy

IS a continuous mapping
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Operator functions

In particular one may consider the empty set of relations impo-
sed on one symbol. The operator domain corresponding to such
relations coincides with the category C of closed operators.

Definition

We say that F is an operator function defined on an operator
domain D if for any Hilbert space H,

Dy >r— F(r) e Cy
is a continuous mapping such that

Mor(r,s) C Mor(F(r), F(s))

for any r,s € Dy,.
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Operator functions

In brief

F is an operator function defined on D if F is a continuous
functor from D into C that do not change the anchor Hilbert
space and act trivially on morphisms.
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Operator functions

In brief

F is an operator function defined on D if F is a continuous
functor from D into C that do not change the anchor Hilbert
space and act trivially on morphisms.

We have: F(ure®) = uF(r)u*
F(r@s)=F(r)® F(s)

In the first formula r € Dy, u is an unitary operator acting
form H onto H' and uru* € Dy is the unique object such
that u € Mor(r, uru*).
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Important concrete topological W*-categories

o Category Rep (A, —) of representations of a C*-algebra A

Objects anchored to H are representations of the C*-algebra A
acting on ‘H. A sequence 7, € Rep (A, H) is converging to
7 € Rep (A, H) if for each a € A, the sequence T,(a) — m(a)

in strong operator topology.
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Important concrete topological W*-categories

o Category Rep (A, —) of representations of a C*-algebra A

Objects anchored to H are representations of the C*-algebra A
acting on ‘H. A sequence 7, € Rep (A, H) is converging to

7 € Rep (A, H) if for each a € A, the sequence T,(a) — m(a)
in strong operator topology.

@ Category Uni(KC ® —), where K is a fixed Hilbert space.

Objects anchored to H are unitary operators acting on K @ H.
The topology on Uni(KC ® H) is the topology of *-strong
convergence.
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Quantum spaces and continuous maps

Quantum Topological
spaces W*-categories

Functors that preserve the
anchor Hilbert space and
act trivially on morphisms

Operator
mappings
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Operators domains relevant to old quantum £(2).

= {RECH: R—normal }

SpRcC’
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Operators domains relevant to old quantum £(2).

R—normal
EH:{RECH. SpRCEq }
SR = ¢°RS
572-12{(R75)68HX57{ SR* :qR*S}
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Operators domains relevant to old quantum £(2).

R—normal
EH:{RECH. SpRCEq }
SR = ¢°RS
572{:{(R75)68HX57{ SR* :qR*S}

(Theorem |

The closure of the sum is an operator mapping from £2 into &

E2,5(R,S)— R+S € &y.
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Operators domains relevant to old quantum £(2).

R—normal
EH:{RECH. SpRCEq }
SR = ¢°RS
572{:{(R75)68HX57{ SR* :qR*S}

The closure of the sum is an operator mapping from £2 into &

E2,5(R,S)— R+S € &y.

R4S = F,(R*S) R F,(R1S)".
Fo(R+S) = F4(R)Fq(S).
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Exponential function equation

Theorem (Old EE Thm)
Let IC be a Hilbert space and

Ex 5 R— F(R) € Uni(K ® H)

be an operator mapping. Then the following conditions are
equivalent:
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Exponential function equation

Theorem (Old EE Thm)
Let IC be a Hilbert space and

Ex 5 R— F(R) € Uni(K ® H)

be an operator mapping. Then the following conditions are
equivalent:

o F(R+S) = F(R)F(S) (2)
for any (R, S) € &2.

S.L. Woronowicz Simplified quantum E(2) group.




Exponential function equation

Theorem (Old EE Thm)
Let IC be a Hilbert space and

Ex 5 R— F(R) € Uni(K ® H)

be an operator mapping. Then the following conditions are
equivalent:

o F(R+S) = F(R)F(S)
for any (R, S) € &2.
@ There exists T € Ex such that

F(R) = Fy(T* ® R)

for all R € &y.
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Operators domains relevant to simplified £(2).

B ot =g%rr
Fum{ree o |
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Operators domains relevant to simplified £(2).

* 2 %
. . rr=q°rr
.FH—{I’GCH. Sp|r\CqZU{O}}'
2

. sr=q’rs
F’r'z'l:{(rvs)EFHXFH- Sf*:qzr*S}
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Operators domains relevant to simplified £(2).

* 2 %
o ) rr=q°rr
.FH—{I’GCH. Sp|r\CqZU{O}}'
2

. sr=q’rs
F’r'z'l:{(rvs)EFHXFH- Sf*:qzr*S}

Then for any Hilbert spaces K and H we have:

Fi* @ Fy C Ecamn, Fie ® Fiy C Eans

FIC®£7—L C.FK(@H, ‘F/C®872-l CF]%®H
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Operator mapping + : F? — F.

The closure of the sum is an operator mapping from F? into F:

FZ, 3 (r,s) —> r+s € Fy.

rt+s = Fy(r=ts) r Fy(r=ts)*.
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Operator mapping + : F? — F.

The closure of the sum is an operator mapping from F? into F:

FZ, 3 (r,s) —> r+s € Fy.

rt+s = Fy(r=ts) r Fy(r=ts)*.

Proof: If r = 0 then the statement is obvious. Therefore we
may assume that kerr = {0}. Let R=m®rand S=m®s,
where m € Fx* with ker m = {0}. Then (R, S) € Ekgn and

we obtain:
m@r+m®s=F,(l®rts)(mer)F,(l @ rts),
rts = Fa(r=ts) r Fy(rts)*.

and the statement follows.
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Exponential function equation

Theorem (New EF Thm)
Let K be a Hilbert space and

Fudr— F(r) eUni(K@H)

be an operator mapping. Then the following conditions are
equivalent:
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Exponential function equation

Theorem (New EF Thm)
Let K be a Hilbert space and

Fudr— F(r) eUni(K@H)

be an operator mapping. Then the following conditions are
equivalent:

o F(r+s) = F(r)F(s)
for any (r,s) € F3.
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Exponential function equation

Theorem (New EF Thm)
Let K be a Hilbert space and

Fudr— F(r) eUni(K@H)

be an operator mapping. Then the following conditions are
equivalent:

o F(r+s) = F(r)F(s)
for any (r,s) € F3.
© There exists t € Fx* such that

F(r)=F(t®r)

for all r € F.
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Formula (1) shows immediately that condition 2 implies
condition 1.
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Formula (1) shows immediately that condition 2 implies
condition 1. We shall prove the converse. Let K’ be a Hilbert
space and m € Fyr with ker m = {0}. Then m® R € Firon
for any R € £ and we may consider the operator mapping

EydR— FmeR)eUni(K@ K @ H)
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Formula (1) shows immediately that condition 2 implies
condition 1. We shall prove the converse. Let K’ be a Hilbert
space and m € Fyr with ker m = {0}. Then m® R € Firon
for any R € £ and we may consider the operator mapping

EydR— FmeR)eUni(K@ K @ H)

By condition 1, this operator mapping fulfils the exponential
equation (2). Therefore there exists T € Exgir such that

F(m® R) = F,(T ®R)

for all R € &y.
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Proof (continuation)

Fm@R)=F(T®R)cUni(KRK @H)
for all R € &y4.
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Proof (continuation)

Fm@R)=F(T®R)cUni(KRK @H)

for all R € &;. Inserting R = m® s (where s € Fy*) we see
that

Fimemes)=F(T@m®s)eUni(Ko K @ K @ H).
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Proof (continuation)

Fm@R)=F(T®R)cUni(KRK @H)

for all R € &;. Inserting R = m® s (where s € Fy*) we see
that

Fimemes)=F(T@m®s)eUni(Ko K @ K @ H).

Operator m ® m commutes with the flip x/. Therefore
T ® m commutes with [ ® . It implies that T =t ® m,
where t is an operator acting on K.
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Proof (continuation)

Fm@R)=F(T®R)cUni(KRK @H)
for all R € &;. Inserting R = m® s (where s € Fy*) we see
that
Fimemes)=F(T@m®s)eUni(Ko K @ K @ H).

Operator m ® m commutes with the flip x/. Therefore

T ® m commutes with [ ® . It implies that T =t ® m,
where t is an operator acting on K. One can easily verify that
t e Fi*
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Proof (continuation)

Fm@R)=F(T®R)cUni(KRK @H)

for all R € &;. Inserting R = m® s (where s € Fy*) we see
that

Fimemes)=F(T@m®s)eUni(Ko K @ K @ H).

Operator m ® m commutes with the flip x/. Therefore

T ® m commutes with [ ® . It implies that T =t ® m,
where t is an operator acting on . One can easily verify that
t € Fx*. Now our formula takes the form

Fim®@R) = F,(t®@m®R)

and Condition 2 of our Theorem follows (with r replaced by
m® R). O
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Quantum E(2)-group.

The domain G introduced below plays the role of quantum
space E(2). For any Hilbert space H we set

Gu = {(u,m) € Uni(H) x Fp : umu™ = g°m}

Then G is a closed complete operator domain.
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Quantum E(2)-group.

The domain G introduced below plays the role of quantum
space E(2). For any Hilbert space H we set

Gu = {(u,m) € Uni(H) x Fp : umu™ = g°m}

Then G is a closed complete operator domain.
For any g = (u,m) € Gy, and g’ = (u', m’) € Gy we set

gDg' =uad,uxmime hy).
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Quantum E(2)-group.
The domain G introduced below plays the role of quantum
space E(2). For any Hilbert space H we set
Gu = {(u,m) € Uni(H) x Fp : umu™ = g°m}

Then G is a closed complete operator domain.

For any g = (u,m) € Gy, and g’ = (u', m’) € Gy we set

gDg' =uad,uxmime hy).

Let g € Gy, g € Gy and g"”" =€ Gy Then

gDg € Gusw

(DgNDeg"=gD(eg'Deg")
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The only nontrivial statement is:

u® m/—i—m X /H’ € F’H@'H“
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The only nontrivial statement is:

u® m/—i—m X /H’ € F’H@'H“

To prove it it is enough to notice that

(uem m® hy) € Fagw
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The only nontrivial statement is:

u® m/—i—m X /H’ € F’H@'H“

To prove it it is enough to notice that
(uem m® hy) € Fagw
and use the fact that

+: P — F
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Unitary representations

For abelian locally compact groups we are interested in the
space of characters. For non-abelian groups we look for
strongly continuous unitary representations. For quantum
groups the two notions unify.
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Unitary representations

For abelian locally compact groups we are interested in the
space of characters. For non-abelian groups we look for
strongly continuous unitary representations. For quantum
groups the two notions unify.

Definition
Let IC be a Hilbert space and

Guogr— Ulg) eUni(KRH)

be an operator mapping. We say that U is a unitary repre-
sentation of quantum E(2) acting on K if

UlgDg') = U(g)2U(g')13

for any g € Gy and g’ € Gy,.
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Description of unitary representations

Our aim is to find all unitary representations of quantum E(2).
The are labelled by the operator domain . For any Hilbert
space K we set

N is a selfadjoint operator

Ok = (N, m): acting on IC,SpN C Z,
e F*, Ni=m(N+1)
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Description of unitary representations

Our aim is to find all unitary representations of quantum E(2).
The are labelled by the operator domain . For any Hilbert
space K we set

A N is a selfadjoint operator
Ge =< (N,m): acting on K,SpN C Z,
me Fi*, Nim=m(N+1)

For any g = (u,m) € Gy and g = (N, M) € Gx we consider
the unitary operator

U(2.8) = Fy( ® m) (I ® u)V®h

acting on K ® H. With this notation we have:
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Description of unitary representations

Let K be a Hilbert space and § € Gx. Then
Guogr— U(g,g) eUni(K@H)

is a unitary representation of E(2).
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Description of unitary representations

Let K be a Hilbert space and § € Gx. Then
Guogr— U(g,g) eUni(K@H)

is a unitary representation of E(2). Any unitary representation
of E(2) is of this form.
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Description of unitary representations

Let K be a Hilbert space and § € Gx. Then

Guogr— U(g,g) eUni(K@H)

is a unitary representation of E(2). Any unitary representation
of E(2) is of this form.

Proof: More difficult part of the theorem is the statement
saying that any representation of E(2) is defined by an
element of G.
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Description of unitary representations

Let K be a Hilbert space and § € Gx. Then
Guogr— U(g,g) eUni(K@H)

is a unitary representation of E(2). Any unitary representation
of E(2) is of this form.

Proof: More difficult part of the theorem is the statement
saying that any representation of E(2) is defined by an
element of G. Let Gy 3 g — U(g) € Uni(K @ H) be an
operator mapping satisfying the character equation:

U(g)12U(g" )13 = U(gDg')

for any g € Gy and g’ € Gy.

S.L. Woronowicz Simplified quantum E(2) group.
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Proof (cont.)

TakeH=H'=C, g = («,0) and g’ = (3,0), where o, € S*.
Then g D g’ = (af,0) and the character equation shows that

U(ap,0) = U(e, 0)U(5,0)

Therefore U(a,0) = N, where N is a selfadjoint operator
acting on KC with integer spectrum.
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Proof (cont.)

TakeH=H'=C, g = («,0) and g’ = (3,0), where o, € S*.
Then g D g’ = (af,0) and the character equation shows that

U(ap,0) = U(e, 0)U(5,0)

Therefore U(a,0) = N, where N is a selfadjoint operator
acting on IC with integer spectrum.

TakeH'=C, g = (u,m) and g’ = («,0), where o € S*. Then
g Dg’ = (cwu, m) and the character equation shows that

U(aw, m) = U(u, m)(a" & k)
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Proof (cont.)
U(au, m) = U(u, m)(aN ® Iy)
Let ®(u, m) = U(u, m)(lx ® u)~N®"_ Then

&(au, m) = d(u, m),
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Proof (cont.)
U(au, m) = U(u, m)(aN ® Iy)
Let ®(u, m) = U(u, m)(lx ® u)~N®"_ Then

&(au, m) = d(u, m),
®(vu, m) = d(u, m)

for any v € Uni(H) commuting with u and m.
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Proof (cont.)
U(au, m) = U(u, m)(aN ® Iy)
Let ®(u, m) = U(u, m)(lx ® u)~N®"_ Then

&(au, m) = d(u, m),
®(vu, m) = d(u, m)

for any v € Uni(H) commuting with u and m. Taking
v = (Phase m)?u* we get

®(u, m) = ®((Phase m)?, m) = F(m)

®(u, m) does not depend on u. Notice that F(0) = Ix

U(u, m) = F(m)(le ® u)Veh
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Proof (cont.)

So far we have shown that
U(u, m) = F(m)(le ® u)Ve,

where F is an operator function on F with values in unitary
operators.
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Proof (cont.)
So far we have shown that
U(u, m) = F(m)(le ® u)Ve,

where F is an operator function on F with values in unitary
operators.

Take H=C, g = («,0) and g’ = (u, m), where o € S*. Then
g Dg’ = (cwu,am) and the character equation shows that

(¥ @ ) F(m)(le ® u)N®h = Fam)(lc ® au)V@m
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Proof (cont.)

So far we have shown that
U(u, m) = F(m)(le ® u)Ve,

where F is an operator function on F with values in unitary
operators.

Take H=C, g = («,0) and g’ = (u, m), where o € S*. Then
g Dg’ = (cwu,am) and the character equation shows that

(a¥ @ ho) F(m)(he © u)¥! = F(am)(he ® au)Ve'n
(N @ b)F(m)(a N @ k) = F(am)
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Proof (cont.)

So far we have shown that
U(u, m) = F(m)(le ® u)Ve,

where F is an operator function on F with values in unitary
operators.

Take H=C, g = («,0) and g’ = (u, m), where o € S*. Then
g Dg’ = (cwu,am) and the character equation shows that

(a¥ @ ho) F(m)(he © u)¥! = F(am)(he ® au)Ve'n
(N @ b)F(m)(a N @ k) = F(am)

(he ® u® b)Y F(hy @ m) (e @ u® hy) “Voen = Fu@m)

- -
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Proof (cont.)

(k@ue /H)N®IH®H F(ly@m) = Flu@om)(lk®u® /H)N®1H®H
U(u,m) = F(m)(lx ® u)N@”H
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Proof (cont.)

(k@ue /H)N®IH®H F(ly@m) = Flu@om)(lk®u® /H)N®IH®H
U(u,m) = F(m)(lx ® u)N@”H

Using the character equation in full generality we have:

Flu® mim® hy)(le ® u® u)V®hen =
F(m®/H)(/IC®U®IH)N®IH®H F(/;.,g(X}n?)(/;g@fﬂ(X)L])N‘g)h{@ﬂ-t7
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Proof (cont.)

(k@ue /H)N®IH®H F(ly@m) = Flu@om)(lk®u® /H)N®IH®H
U(u,m) = F(m)(lx ® u)N@”H

Using the character equation in full generality we have:

Flu® mim® hy)(le ® u® u)V®hen =
F(m®/H)(/IC®U®IH)N®IH®H F(/;.,g(X}n?)(/;g@fﬂ(X)L])N‘g)h{@ﬂ-t7

Fu® m+m® ly) = F(m® hy) F(u@m).
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Proof (cont.)

(k@ue /H)N®IH®H F(ly@m) = Flu@om)(lk®u® /H)N®IH®H
U(u,m) = F(m)(lx ® u)N@”H

Using the character equation in full generality we have:

Flu® mim® hy)(le ® u® u)V®hen =
F(m®/H)(/IC®U®IH)N®IH®H F(/;.,g(X}n?)(/;g@fﬂ(X)L])N‘g)h{@ﬂ-t7

Flu@ mim® ly) = F(m® ly) F(u® m).

F(r+s) = F(r) F(s),

where (r,s) = (m® by, u ® m) is a generic element of F3,,.
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Proof (cont.)

Using New EF Thm we see that there exists im € Fi* such

that F(m) = Fy(in ® m)
for all m € F.

S.L. Woronowicz Simplified quantum E(2) group.



Proof (cont.)

Using New EF Thm we see that there exists im € Fi* such
that F(m) = Fy(fn & m)
for all m € F.

U(u,m) = Fo(m@ m)(lc ® u)’ﬁ’@)’H = U(N, m; u, m)
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Proof (cont.)

Using New EF Thm we see that there exists im € Fi* such
that F(m) = Fo(n® m)

for all m € F.

U(u,m) = Fo(m@ m)(lc ® u)’ﬁ’@)’H = U(N, m; u, m)

To end the proof we use the established earlier formula:

(@ @ h)F(m) (@™ & Iy) = F(am).

Therefore X X
aima N = am
and Nin = m(N + I). It shows that (N, M) € Gy O
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N

Group structure on G.

Let g € Gr and g e Gir. Then
Gnuog+— U, g)sU(g,8)13cUni(K@K ®H)

is a unitary representation of E(2) acting on K ® K'.
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N

Group structure on G.

Let g € Gr and g e Gir. Then
Gnuog+— U, g)sU(g,8)13cUni(K@K ®H)

is a unitary representation of E£(2) acting on £ ® K'. By our
theorem this representation is related to an element of Gigxr.
This element is denoted by g (D g’.
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N

Group structure on G.

Let g € Gr and g e Gir. Then
Gnuog+— U, g)sU(g,8)13cUni(K@K ®H)

is a unitary representation of E£(2) acting on £ ® K'. By our
theorem this representation is related to an element of Gigxr.
This element is denoted by g D g’. So we have

U(gD2' g)=U(&' g)sU(& 8)s-
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N

Group structure on G.

Let g € Gr and g e Gir. Then
Gnuog+— U, g)sU(g,8)13cUni(K@K ®H)

is a unitary representation of E£(2) acting on £ ® K'. By our
theorem this representation is related to an element of Gigxr.
This element is denoted by g D g’. So we have

U(gD2' g)=U(&' g)sU(& 8)s-

If & = (N, A) and g’ = (N, A7) then the simple computation
shows that

EDE=(N® ot N, MoVt i)

S.L. Woronowicz Simplified quantum E(2) group.



Multiplicative Unitaries

Let H be a Hilbert space and W be a unitary operator acting
on H® H. W is called a multiplicative unitary if

W23 |/V12 = W12 |/V13 W23

S.L. Woronowicz Simplified quantum E(2) group.



Modular multiplicative unitaries

A unitary W € Uni(H ® H) is a modular multiplicative
unitary if
o W is multiplicative
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Modular multiplicative unitaries

A unitary W € Uni(H ® H) is a modular multiplicative
unitary if
o Wis multiplicative (W23 W12 = W12 W13 W23)
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Modular multiplicative unitaries

A unitary W € Uni(H ® H) is a modular multiplicative
unitary if

o W is multiplicative (Was Wiy, = Wi Wi3Wha3)

@ there exist positive, selfadjoint @ and CAQ on H such that

W(Qe QW =Q0®Q
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Modular multiplicative unitaries

A unitary W € Uni(H ® H) is a modular multiplicative
unitary if
o Wis multiplicative (W23 W12 = W12 W13 W23)
@ there exist positive, selfadjoint @ and CAQ on H such that
W(Qe QW =Q0®Q

® we have

(xy|W|z@u) = (?@ Qy‘W‘Y@ Q_1u>

for a certain unitary W € Uni(H ® H).
W is manageable if @ = Q.
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From multiplicative unitaries to quantum groups
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From multiplicative unitaries to quantum groups

@ Take modular m.u. W € Uni(H @ H)
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From multiplicative unitaries to quantum groups

@ Take modular mu. W € Uni(H @ H)
@ Let A= {w ® id)(W) CwE B(H)*}norm closure
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From multiplicative unitaries to quantum groups

@ Take modular m.u. W € Uni(H @ H)
o Let A= {w®id)(W):w e B(H),}"™ 9" c B(H)
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From multiplicative unitaries to quantum groups

@ Take modular m.u. W € Uni(H @ H)
o Let A= {w®id)(W):w e B(H),}"™ 9" c B(H)
@ Ais a C*-algebra.
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From multiplicative unitaries to quantum groups

@ Take modular m.u. W € Uni(H @ H)

o Let A= {w®id)(W):w e B(H),}"™ 9" c B(H)
@ Ais a C*-algebra.

@ For ac€ Awe have W(a® ly)W* e M(A® A) and
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From multiplicative unitaries to quantum groups

@ Take modular m.u. W € Uni(H @ H)

o Let A= {w®id)(W):w e B(H),}"™ 9" c B(H)
@ Ais a C*-algebra.

@ For ac€ Awe have W(a® ly)W* e M(A® A) and

Asar— W(a® h)W*

defines a comultiplication A € Mor(A, A® A).
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Quantum group from W

@ We have (A ® id)eA = (id ® A)-A
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Quantum group from W

@ We have (A ® id)eA = (id ® A)-A

o We have
CLS
{A@W@wyabeA} —A®A,

{@®0AwyabeAF5:A®A
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Quantum group from W

@ We have (A ® id)eA = (id ® A)-A

@ We have
CLS
{A(a)(l@b) cabe A} —A®A,
CLS
{(a@/)A(b) Labe A} —A®A.
@ There is a closed antimultiplicative map

K (w@id)(W) — (w®id)(W™)
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Quantum group from W

@ We have (A ® id)eA = (id ® A)-A

@ We have
CLS
{A(a)(l@b) cabe A} —A®A,
CLS
{(a@/)A(b) Labe A} —A®A.
@ There is a closed antimultiplicative map
K (w®id)(W) — (w®id)(W™)

@ Moreover x = Ro7i where R is an antiautomorphism of A
2

and (7¢)ser is a one parameter group of automorphisms
of A: 7:(a) = Q%ta@Q 2"

S.L. Woronowicz Simplified quantum E(2) group.



Heisenberg commutation relations

Let § € Gy and g € Gy (the same Hilbert space!). We say
that (g, g) is a Heisenberg pair if

Uig,g)e®lk)U(g,g') =gDég’

for any g’ € Gi.
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Heisenberg commutation relations

Let § € Gy and g € Gy (the same Hilbert space!). We say
that (g, g) is a Heisenberg pair if

Uig,g)e®lk)U(g,g') =gDég’

for any g’ € Gi.. For any Hilbert space H we set

(&.8)isa }

Heisenberg pair

Ny = {(éag) € Gy X Gy :

Then $) is a closed complete operator domain.
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Heisenberg relations and multiplicative unitaries

Let H be a Hilbert space and (g, g) € $». Then

W=U(,zs)

is a multiplicative unitary acting on H ® H related to the
quantum E(2)-group.
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Heisenberg relations and multiplicative unitaries

Theorem
Let H be a Hilbert space and (g, g) € $». Then

W=U(,zs)

is a multiplicative unitary acting on H ® H related to the
quantum E(2)-group. Any multiplicative unitary related to the
quantum E(2)-group is of this form.
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Heisenberg relations revealed

Theorem

Let N, M, u, m be closed operators acting on a Hilbert space H.
Then (N, m, u, m) € 4 if and only if the following conditions
are satisfied:
o (u,m) € Gy, kerm = {0},
o u'Nu= N+ ly
o N and m strongly commute.
® M= mtut?, where? is a closed operator such that:
© (Nv 'f) € gA’H,
o u*fu = g°F,

o ? and m strongly commute.
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We say that the Heisenberg pair is of type | if 7 = 0.
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We say that the Heisenberg pair is of type | if 7 = 0.
In this case we put v = Phasem, N = log, |m| and ¥ = uv 2.
Then
@ U, v are unitary,
N, N are selfadjoint with integer spectrum,
No* =N+ 1 and vv™ = N + 1,

°
° v*
@ (N, V) strongly commutes with (N, v).

(A
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We say that the Heisenberg pair is of type | if 7 = 0.

In this case we put v = Phasem, N = log, |m| and ¥ = uv 2.
Then

@ U, v are unitary,

A

=<

, N are selfadjoint with integer spectrum,
No* =N+ 1 and vv™ = N + 1,

°
° v*
@ (N, V) strongly commutes with (N, v).

/\<>

(N, 0) and (N, v) are Heisenberg pair for the abelian group S*.
Hence quadruple (N, v, N, v) is UNIQUE.
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We say that the Heisenberg pair is of type | if 7 = 0.
In this case we put v = Phasem, N = log, |m| and ¥ = uv 2.
Then
@ U, v are unitary,
N, N are selfadjoint with integer spectrum,
No* =N+ 1 and vv™ = N + 1,
v

°
°
° ) strongly commutes with (N, v).

v
(A,
(N, 0) and (N, v) are Heisenberg pair for the abelian group S*.
Hence quadruple (N, v, N, v) is UNIQUE.

Theorem

The Heisenberg pair of type | is unique (up to the unitary
equivalence and multiplicity).
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The case ker 7 = {0}.

We say that the Heisenberg pair is of type Il if ker 7 = {0}.
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The case ker 7 = {0}.

We say that the Heisenberg pair is of type Il if ker 7 = {0}.

In this case we put v = Phase m, N = log, |ml|, ¥ = uv=2,

= log, |F| — N and # = g2N'?. Then:
Vv, v are unitary,
N’, N are selfadjoint with integer spectrum,
ON'O* = N + 1 and viWV* = N + 1,
€ F*, ker? = {0},

°
°
°
o7

o (N, 9), (N,v) and # mutually strongly commute.
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The case ker 7 = {0}.

We say that the Heisenberg pair is of type Il if ker 7 = {0}.

In this case we put v = Phase m, N = log, |ml|, ¥ = uv=2,

= log, |F| — N and # = g2N'?. Then:

Vv, v are unitary,

N’, N are selfadjoint with integer spectrum,

ON'O* = N + 1 and vNv* = N + 1,

P e F*, ker? = {0},

(N, 9), (N, v) and # mutually strongly commute.

The Heisenberg pair of type Il is unique (up to the unitary
equivalence and multiplicity).
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Structure of Heisenberg pair of type |l

Simple observation:
If (8,8) € $Hy, and &' € G then

(B'DE, Ik ®g) € Ncan
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Structure of Heisenberg pair of type |l

Simple observation:
If (8,8) € $Hy, and &' € G then
(8'DE& Ik ®g) € Hran

Theorem

>
|
A\

If (8,g) is a Heisenberg pair of type | and §' = (N, m') € G
with ker m" = {0} then

(él®g7 llC®g)

is a Heisenberg pair of type Il. Any Heisenberg pair of type Il
arises in this way.
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Multiplicative Unitaries

@ MU of type | are modular and regular.
@ MU of type Il are manageable and non-regular.

@ MU are labelled by pairs of nonnegative integers (k, /)
with kK + /> 1.
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