Simplified quantum E(2) group.

S.L. Woronowicz

Department of Mathematical Methods in Physics Faculty of Physics, Warsaw University

Vienna, ESI, 18.04.2011

S.L. Woronowicz Simplified quantum E(2) group.

- **-** E

$\mathbb{E}(2)$ versus simplified E(2)

Double covering:

$$\mathbb{E}(2) \ni \left(\begin{array}{c} v \ , \ n \\ 0 \ , \ v^{-1} \end{array}\right) \longmapsto \left(\begin{array}{c} u \ , \ m \\ 0 \ , \ 1 \end{array}\right) \in E(2),$$

where $u = v^2$ and m = vn.

COMMUTATION RELATIONS

v is unitary n is normal $\operatorname{Sp}|n| \subset q^{\mathbb{Z}} \cup \{0\}$ $vnv^* = qn$ u is unitary $mm^*=q^2m^*m$ $\operatorname{Sp}|m|\subset q^{\mathbb{Z}}\cup\{0\}$ $umu^*=q^2m$

$\mathbb{E}(2)$ versus simplified E(2)

Double covering:

$$\mathbb{E}(2) \ni \left(\begin{array}{c} v \ , \ n \\ 0 \ , \ v^{-1} \end{array}\right) \longmapsto \left(\begin{array}{c} u \ , \ m \\ 0 \ , \ 1 \end{array}\right) \in E(2),$$

where $u = v^2$ and m = vn.

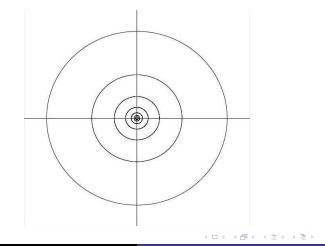
COMMUTATION RELATIONS

v is unitaryu is unitaryn is normal $mm^* = q^2m^*m$ Sp $|n| \subset q^{\mathbb{Z}} \cup \{0\}$ Sp $|m| \subset q^{\mathbb{Z}} \cup \{0\}$ vnv* = qn $umu^* = q^2m$

Quantised complex plane

Let q be the deformation parameter: 0 < q < 1. We set

$$\overline{\mathbb{C}}^{\boldsymbol{q}} = \left\{ \gamma : |\gamma| \in \boldsymbol{q}^{\mathbb{Z}} \cup \{\boldsymbol{0}\} \right\}$$



S.L. Woronowicz Simplified quantum E(2) group.

We shall use the following function:

$$\overline{\mathbb{C}}^q \ni \gamma \longmapsto F_q(\gamma) \in S^1$$
 $F_q(\gamma) = \left\{ egin{array}{c} \prod_{k=0}^\infty rac{1+q^{2k}\overline{\gamma}}{1+q^{2k}\gamma} & ext{for } \gamma
eq -q^{-2k}, \ -1 & ext{otherwise.} \end{array}
ight.$

Then F_q is a continuous function: $F_q \in \mathcal{C}(\overline{\mathbb{C}}^q)$.

Let CR(r, s, ..., w) be commutation relations imposed on N operators (symbols) r, s, ..., w. Then for any Hilbert space \mathcal{H} one may consider the set of all N-tuples of closed operators satisfying the relations:

$$\mathcal{D}_{\mathcal{H}}^{CR} = \left\{ (r, s \dots, w) \in \mathcal{C}_{\mathcal{H}}^{N} : CR(r, s, \dots, w) \right\}$$

We say that \mathcal{D}^{CR} is an operator domain corresponding to the commutation relations CR. Mathematically operator domains are concrete topological W^* -categories.

Concrete topological W^* -categories

- Objects are N-tuples of operators. Each object r is anchored to a Hilbert space where the operators act. For each Hilbert space H the objects anchored to H form a set D_H.
- Morphisms are intertwining operators. For any r ∈ D_{H1} and s ∈ D_{H2}, Mor(r, s) is a weakly closed linear subspace of B(H1, H2). Composition of morphisms is the composition of intertwinners. Moreover

$$(m \in \operatorname{Mor}(r, s)) \Rightarrow (m^* \in \operatorname{Mor}(s, r))$$

• \mathcal{D} is complete and closed with respect to the natural topology.

Concrete topological W^* -categories

- Objects are N-tuples of operators. Each object r is anchored to a Hilbert space where the operators act. For each Hilbert space H the objects anchored to H form a set D_H.
- Morphisms are intertwining operators. For any r ∈ D_{H1} and s ∈ D_{H2}, Mor(r, s) is a weakly closed linear subspace of B(H1, H2). Composition of morphisms is the composition of intertwinners. Moreover

$$(m \in \operatorname{Mor}(r, s)) \Rightarrow (m^* \in \operatorname{Mor}(s, r))$$

• \mathcal{D} is complete and closed with respect to the natural topology.

Concrete topological W^* -categories

- Objects are N-tuples of operators. Each object r is anchored to a Hilbert space where the operators act. For each Hilbert space H the objects anchored to H form a set D_H.
- Morphisms are intertwining operators. For any r ∈ D_{H1} and s ∈ D_{H2}, Mor(r, s) is a weakly closed linear subspace of B(H1, H2). Composition of morphisms is the composition of intertwinners. Moreover

$$(m \in \operatorname{Mor}(r, s)) \Rightarrow (m^* \in \operatorname{Mor}(s, r))$$

D is complete and closed with respect to the natural topology.

Completeness

In brief, the concrete W^* -category \mathcal{D} is complete if it is closed under unitary equivalence, direct sums and passing to a subobject. More precisely the following statement holds:

Consider any family of objects $r_{\lambda} \in D_{\mathcal{H}_{\lambda}}$ and any family of operators $m_{\lambda} \in B(\mathcal{H}, \mathcal{H}_{\lambda})$ (where \mathcal{H} is a Hilbert space and λ runs over an index set Λ) such that

$$\bigcap_{\lambda \in \Lambda} \ker m_{\lambda} = \{0\} \quad \text{ and } \quad m_{\lambda'} m_{\lambda}^* \in \operatorname{Mor}(r_{\lambda}, r_{\lambda'})$$

for all $\lambda, \lambda' \in \Lambda$. Then there exists unique $r \in \mathcal{D}_{\mathcal{H}}$ such that $m_{\lambda} \in \operatorname{Mor}(r, r_{\lambda})$ for all $\lambda \in \Lambda$.

In brief, the concrete W^* -category \mathcal{D} is complete if it is closed under unitary equivalence, direct sums and passing to a subobject. More precisely the following statement holds:

Consider any family of objects $r_{\lambda} \in D_{\mathcal{H}_{\lambda}}$ and any family of operators $m_{\lambda} \in B(\mathcal{H}, \mathcal{H}_{\lambda})$ (where \mathcal{H} is a Hilbert space and λ runs over an index set Λ) such that

$$\bigcap_{\lambda \in \Lambda} \ker m_{\lambda} = \{0\} \quad \text{ and } \quad m_{\lambda'} m_{\lambda}^* \in \operatorname{Mor}(r_{\lambda}, r_{\lambda'})$$

for all $\lambda, \lambda' \in \Lambda$. Then there exists unique $r \in \mathcal{D}_{\mathcal{H}}$ such that $m_{\lambda} \in \operatorname{Mor}(r, r_{\lambda})$ for all $\lambda \in \Lambda$.

Natural topology

Definition (z-transform)

For any closed operator r acting on a Hilbert space ${\cal H}$ we set $z_r = r \left(l + r^* r \right)^{-1/2}.$

We say that a sequence $r_n \in C_H$ of closed operators is converging to $r \in C_H$ if

$$\lim_{n \to \infty} \|z_{r_n} x - z_r x\| = 0$$
$$\lim_{n \to \infty} \|z_{r_n}^* x - z_r^* x\| = 0$$

for any $x \in \mathcal{H}$

With this topology, $\mathcal{D}_{\mathcal{H}}^{CR}$ is closed in $\mathcal{C}_{\mathcal{H}}^{N}$ for each Hilbert space $\mathcal{H}.$

Natural topology

Definition (z-transform)

For any closed operator r acting on a Hilbert space ${\cal H}$ we set $z_r = r \left(l + r^* r \right)^{-1/2}.$

We say that a sequence $r_n \in C_H$ of closed operators is converging to $r \in C_H$ if

$$\lim_{n \to \infty} \|z_{r_n} x - z_r x\| = 0$$
$$\lim_{n \to \infty} \|z_{r_n}^* x - z_r^* x\| = 0$$

for any $x \in \mathcal{H}$

With this topology, $\mathcal{D}_{\mathcal{H}}^{CR}$ is closed in $\mathcal{C}_{\mathcal{H}}^{N}$ for each Hilbert space $\mathcal{H}.$

Natural topology

Definition (z-transform)

For any closed operator r acting on a Hilbert space ${\cal H}$ we set $z_r = r \left(l + r^* r \right)^{-1/2}.$

We say that a sequence $r_n \in C_H$ of closed operators is converging to $r \in C_H$ if

$$\lim_{r \to \infty} \|z_{r_n} x - z_r x\| = 0$$
$$\lim_{r \to \infty} \|z_{r_n}^* x - z_r^* x\| = 0$$

for any $x \in \mathcal{H}$

With this topology, $\mathcal{D}_{\mathcal{H}}^{CR}$ is closed in $\mathcal{C}_{\mathcal{H}}^{N}$ for each Hilbert space \mathcal{H} .

Operator functions

In particular one may consider the empty set of relations imposed on one symbol. The operator domain corresponding to such relations coincides with the category C of closed operators.

Definition

We say that F is an operator function defined on an operator domain D if for any Hilbert space H,

$$\mathcal{D}_{\mathcal{H}} \ni r \longrightarrow F(r) \in \mathcal{C}_{\mathcal{H}}$$

is a continuous mapping such that

 $\operatorname{Mor}(r,s) \subset \operatorname{Mor}(F(r),F(s))$

for any $r, s \in \mathcal{D}_{\mathcal{H}}$.

Operator functions

In particular one may consider the empty set of relations imposed on one symbol. The operator domain corresponding to such relations coincides with the category C of closed operators.

Definition

We say that F is an operator function defined on an operator domain D if for any Hilbert space H,

$$\mathcal{D}_{\mathcal{H}} \ni r \longrightarrow F(r) \in \mathcal{C}_{\mathcal{H}}$$

is a continuous mapping such that

 $\operatorname{Mor}(r,s) \subset \operatorname{Mor}(F(r),F(s))$

for any $r, s \in \mathcal{D}_{\mathcal{H}}$.

Operator functions

In particular one may consider the empty set of relations imposed on one symbol. The operator domain corresponding to such relations coincides with the category C of closed operators.

Definition

We say that F is an operator function defined on an operator domain D if for any Hilbert space H,

$$\mathcal{D}_{\mathcal{H}} \ni r \longrightarrow F(r) \in \mathcal{C}_{\mathcal{H}}$$

is a continuous mapping such that

$$Mor(r, s) \subset Mor(F(r), F(s))$$

for any $r, s \in \mathcal{D}_{\mathcal{H}}$.

In brief

F is an operator function defined on \mathcal{D} if F is a continuous functor from \mathcal{D} into \mathcal{C} that do not change the anchor Hilbert space and act trivially on morphisms.

We have:

$$F(uru^*) = uF(r)u^*$$

$$F(r \oplus s) = F(r) \oplus F(s)$$

In the first formula $r \in D_{\mathcal{H}}$, u is an unitary operator acting form \mathcal{H} onto \mathcal{H}' and $uru^* \in D_{\mathcal{H}'}$ is the unique object such that $u \in Mor(r, uru^*)$.

In brief

F is an operator function defined on \mathcal{D} if F is a continuous functor from \mathcal{D} into \mathcal{C} that do not change the anchor Hilbert space and act trivially on morphisms.

We have:

$$F(uru^*) = uF(r)u^*$$

$$F(r \oplus s) = F(r) \oplus F(s)$$

In the first formula $r \in D_{\mathcal{H}}$, u is an unitary operator acting form \mathcal{H} onto \mathcal{H}' and $uru^* \in D_{\mathcal{H}'}$ is the unique object such that $u \in Mor(r, uru^*)$.

Important concrete topological W^* -categories

• Category $\operatorname{Rep}(A, -)$ of representations of a C*-algebra A

Objects anchored to \mathcal{H} are representations of the C*-algebra A acting on \mathcal{H} . A sequence $\pi_n \in \text{Rep}(A, \mathcal{H})$ is converging to $\pi \in \text{Rep}(A, \mathcal{H})$ if for each $a \in A$, the sequence $\pi_n(a) \to \pi(a)$ in strong operator topology.

• Category $\mathcal{U}ni(\mathcal{K}\otimes -)$, where \mathcal{K} is a fixed Hilbert space.

Objects anchored to \mathcal{H} are unitary operators acting on $\mathcal{K} \otimes \mathcal{H}$. The topology on $\mathcal{U}ni(\mathcal{K} \otimes \mathcal{H})$ is the topology of *-strong convergence.

Important concrete topological W^* -categories

• Category $\operatorname{Rep}(A, -)$ of representations of a C*-algebra A

Objects anchored to \mathcal{H} are representations of the C*-algebra A acting on \mathcal{H} . A sequence $\pi_n \in \text{Rep}(A, \mathcal{H})$ is converging to $\pi \in \text{Rep}(A, \mathcal{H})$ if for each $a \in A$, the sequence $\pi_n(a) \to \pi(a)$ in strong operator topology.

• Category $Uni(\mathcal{K}\otimes -)$, where \mathcal{K} is a fixed Hilbert space.

Objects anchored to \mathcal{H} are unitary operators acting on $\mathcal{K} \otimes \mathcal{H}$. The topology on $\mathcal{U}ni(\mathcal{K} \otimes \mathcal{H})$ is the topology of *-strong convergence.

Quantum spaces and continuous maps

Quantum spaces Topological W^* -categories

Operator mappings Functors that preserve the anchor Hilbert space and act trivially on morphisms

$$\mathcal{E}_{\mathcal{H}} = \left\{ R \in \mathcal{C}_{\mathcal{H}} : \begin{array}{l} R - \text{normal} \\ \operatorname{Sp} R \subset \overline{\mathbb{C}}^{q} \end{array} \right\}.$$
$$\mathcal{E}_{\mathcal{H}}^{2} = \left\{ (R, S) \in \mathcal{E}_{\mathcal{H}} \times \mathcal{E}_{\mathcal{H}} : \begin{array}{l} SR = q^{2}RS \\ SR^{*} = R^{*}S \end{array} \right\}.$$

Theorem

The closure of the sum is an operator mapping from \mathcal{E}^2 into \mathcal{E} :

$$\mathcal{E}^2_{\mathcal{H}} \ni (R, S) \longmapsto R \dot{+} S \in \mathcal{E}_{\mathcal{H}}.$$

$$R \dot{+} S = F_q(R^{-1}S) R F_q(R^{-1}S)^*.$$

$$F_q(R \dot{+} S) = F_q(R) F_q(S).$$

(1)

$$\mathcal{E}_{\mathcal{H}} = \left\{ R \in \mathcal{C}_{\mathcal{H}} : \begin{array}{l} R - \text{normal} \\ \mathsf{Sp} \ R \subset \overline{\mathbb{C}}^{q} \end{array} \right\}.$$
$$\mathcal{E}_{\mathcal{H}}^{2} = \left\{ (R, S) \in \mathcal{E}_{\mathcal{H}} \times \mathcal{E}_{\mathcal{H}} : \begin{array}{l} SR = q^{2}RS \\ SR^{*} = R^{*}S \end{array} \right\}$$

Theorem

The closure of the sum is an operator mapping from \mathcal{E}^2 into \mathcal{E} :

$$\mathcal{E}^2_{\mathcal{H}}
i (R, S) \longmapsto R \dot{+} S \in \mathcal{E}_{\mathcal{H}}.$$

$$R \dot{+} S = F_q(R^{-1}S) R F_q(R^{-1}S)^*.$$

$$F_q(R \dot{+} S) = F_q(R) F_q(S).$$

$$\mathcal{E}_{\mathcal{H}} = \left\{ R \in \mathcal{C}_{\mathcal{H}} : \begin{array}{l} R - \text{normal} \\ \mathsf{Sp} \ R \subset \overline{\mathbb{C}}^{q} \end{array} \right\}.$$
$$\mathcal{E}_{\mathcal{H}}^{2} = \left\{ (R, S) \in \mathcal{E}_{\mathcal{H}} \times \mathcal{E}_{\mathcal{H}} : \begin{array}{l} SR = q^{2}RS \\ SR^{*} = R^{*}S \end{array} \right\}$$

Theorem

The closure of the sum is an operator mapping from \mathcal{E}^2 into \mathcal{E} :

$$\mathcal{E}^2_{\mathcal{H}}
i (R, S) \longmapsto R \dot{+} S \in \mathcal{E}_{\mathcal{H}}.$$

$$R \dot{+} S = F_q(R^{-1}S) R F_q(R^{-1}S)^*.$$

$$F_q(R \dot{+} S) = F_q(R) F_q(S).$$

$$\mathcal{E}_{\mathcal{H}} = \left\{ R \in \mathcal{C}_{\mathcal{H}} : \begin{array}{l} R - \text{normal} \\ \mathsf{Sp} \ R \subset \overline{\mathbb{C}}^{q} \end{array} \right\}.$$
$$\mathcal{E}_{\mathcal{H}}^{2} = \left\{ (R, S) \in \mathcal{E}_{\mathcal{H}} \times \mathcal{E}_{\mathcal{H}} : \begin{array}{l} SR = q^{2}RS \\ SR^{*} = R^{*}S \end{array} \right\}$$

Theorem

The closure of the sum is an operator mapping from \mathcal{E}^2 into \mathcal{E} :

$$\mathcal{E}^2_{\mathcal{H}}
i (R, S) \longmapsto R \dot{+} S \in \mathcal{E}_{\mathcal{H}}.$$

$$\begin{aligned} R\dot{+}S &= F_q(R^{-1}S) \, R \, F_q(R^{-1}S)^*. \\ F_q(R\dot{+}S) &= F_q(R) F_q(S). \end{aligned}$$

(1)

Theorem (Old EE Thm)

Let \mathcal{K} be a Hilbert space and

$$\mathcal{E}_{\mathcal{H}} \ni R \longmapsto F(R) \in \mathcal{U}$$
ni $(\mathcal{K} \otimes \mathcal{H})$

be an operator mapping. Then the following conditions are equivalent:

$$F(R + S) = F(R)F(S)$$

for any $(R,S) \in \mathcal{E}^2_{\mathcal{H}}$.

) There exists $T\in\mathcal{E}_{\mathcal{K}}$ such that

$$F(R) = F_q(T^* \otimes R)$$

for all $R \in \mathcal{E}_{\mathcal{H}}$.

Theorem (Old EE Thm)

Let \mathcal{K} be a Hilbert space and

$$\mathcal{E}_{\mathcal{H}} \ni R \longmapsto F(R) \in \mathcal{U}$$
ni $(\mathcal{K} \otimes \mathcal{H})$

be an operator mapping. Then the following conditions are equivalent:

•
$$F(R + S) = F(R)F(S)$$
 (2)

for any $(R, S) \in \mathcal{E}^2_{\mathcal{H}}$.

) There exists $T\in\mathcal{E}_{\mathcal{K}}$ such that

 $F(R) = F_q(T^* \otimes R)$

for all $R \in \mathcal{E}_{\mathcal{H}}$.

Theorem (Old EE Thm)

Let \mathcal{K} be a Hilbert space and

$$\mathcal{E}_{\mathcal{H}} \ni R \longmapsto F(R) \in \mathcal{U}$$
ni $(\mathcal{K} \otimes \mathcal{H})$

be an operator mapping. Then the following conditions are equivalent:

$$\bullet \qquad \qquad F(R + S) = F(R)F(S) \qquad (2)$$

for any $(R, S) \in \mathcal{E}^2_{\mathcal{H}}$.

2 There exists $T \in \mathcal{E}_{\mathcal{K}}$ such that

$$F(R)=F_q(T^*\otimes R)$$

for all $R \in \mathcal{E}_{\mathcal{H}}$.

Operators domains relevant to simplified E(2).

$$\mathcal{F}_{\mathcal{H}} = \left\{ r \in \mathcal{C}_{\mathcal{H}} : \frac{rr^* = q^2 r^* r}{\operatorname{Sp} |r| \subset q^{\mathbb{Z}} \cup \{0\}} \right\}.$$
$$\mathcal{F}_{\mathcal{H}}^2 = \left\{ (r, s) \in \mathcal{F}_{\mathcal{H}} \times \mathcal{F}_{\mathcal{H}} : \frac{sr = q^2 rs}{sr^* = q^2 r^* s} \right\}$$

Then for any Hilbert spaces \mathcal{K} and \mathcal{H} we have:

 $\mathcal{F}_{\mathcal{K}}^{*} \otimes \mathcal{F}_{\mathcal{H}} \subset \mathcal{E}_{\mathcal{K} \otimes \mathcal{H}}, \qquad \mathcal{F}_{\mathcal{K}}^{*} \otimes \mathcal{F}_{\mathcal{H}}^{2} \subset \mathcal{E}_{\mathcal{K} \otimes \mathcal{H}}^{2};$

 $\mathcal{F}_{\mathcal{K}} \otimes \mathcal{E}_{\mathcal{H}} \subset \mathcal{F}_{\mathcal{K} \otimes \mathcal{H}}, \qquad \mathcal{F}_{\mathcal{K}} \otimes \mathcal{E}_{\mathcal{H}}^2 \subset \mathcal{F}_{\mathcal{K} \otimes \mathcal{H}}^2$

Operators domains relevant to simplified E(2).

$$\mathcal{F}_{\mathcal{H}} = \left\{ r \in \mathcal{C}_{\mathcal{H}} : \begin{array}{c} rr^* = q^2 r^* r \\ \operatorname{Sp} |r| \subset q^{\mathbb{Z}} \cup \{0\} \end{array}
ight\}. \ \mathcal{F}_{\mathcal{H}}^2 = \left\{ (r,s) \in \mathcal{F}_{\mathcal{H}} imes \mathcal{F}_{\mathcal{H}} : \begin{array}{c} sr = q^2 rs \\ sr^* = q^2 r^* s \end{array}
ight\}$$

Then for any Hilbert spaces ${\mathcal K}$ and ${\mathcal H}$ we have:

 $\mathcal{F}_{\mathcal{K}}^{*} \otimes \mathcal{F}_{\mathcal{H}} \subset \mathcal{E}_{\mathcal{K} \otimes \mathcal{H}}, \qquad \mathcal{F}_{\mathcal{K}}^{*} \otimes \mathcal{F}_{\mathcal{H}}^{2} \subset \mathcal{E}_{\mathcal{K} \otimes \mathcal{H}}^{2}$

 $\mathcal{F}_{\mathcal{K}} \otimes \mathcal{E}_{\mathcal{H}} \subset \mathcal{F}_{\mathcal{K} \otimes \mathcal{H}}, \qquad \mathcal{F}_{\mathcal{K}} \otimes \mathcal{E}_{\mathcal{H}}^2 \subset \mathcal{F}_{\mathcal{K} \otimes \mathcal{H}}^2$

Operators domains relevant to simplified E(2).

$$\mathcal{F}_{\mathcal{H}} = \left\{ r \in \mathcal{C}_{\mathcal{H}} : \begin{array}{c} rr^* = q^2 r^* r \\ \operatorname{Sp} |r| \subset q^{\mathbb{Z}} \cup \{0\} \end{array}
ight\}. \ \mathcal{F}_{\mathcal{H}}^2 = \left\{ (r,s) \in \mathcal{F}_{\mathcal{H}} imes \mathcal{F}_{\mathcal{H}} : \begin{array}{c} sr = q^2 rs \\ sr^* = q^2 r^* s \end{array}
ight\}$$

Then for any Hilbert spaces \mathcal{K} and \mathcal{H} we have:

$$\mathcal{F}_{\mathcal{K}}^* \otimes \mathcal{F}_{\mathcal{H}} \subset \mathcal{E}_{\mathcal{K} \otimes \mathcal{H}}, \qquad \mathcal{F}_{\mathcal{K}}^* \otimes \mathcal{F}_{\mathcal{H}}^2 \subset \mathcal{E}_{\mathcal{K} \otimes \mathcal{H}}^2,$$

 $\mathcal{F}_{\mathcal{K}}\otimes\mathcal{E}_{\mathcal{H}}\subset\mathcal{F}_{\mathcal{K}\otimes\mathcal{H}},\qquad \mathcal{F}_{\mathcal{K}}\otimes\mathcal{E}^{2}_{\mathcal{H}}\subset\mathcal{F}^{2}_{\mathcal{K}\otimes\mathcal{H}}$

Operator mapping $\dot{+}: \mathcal{F}^2 \longrightarrow \mathcal{F}$.

Theorem

The closure of the sum is an operator mapping from \mathcal{F}^2 into \mathcal{F} :

$$\mathcal{F}_{\mathcal{H}}^2 \ni (r, s) \longmapsto r \dot{+} s \in \mathcal{F}_{\mathcal{H}}.$$

$$\dot{r+s} = F_q(r^{-1}s) r F_q(r^{-1}s)^*.$$

Proof: If r = 0 then the statement is obvious. Therefore we may assume that ker $r = \{0\}$. Let $R = m \otimes r$ and $S = m \otimes s$, where $m \in \mathcal{F}_{K}^{*}$ with ker $m = \{0\}$. Then $(R, S) \in \mathcal{E}_{K \otimes H}$ and we obtain:

$$m \otimes r \dot{+} m \otimes s = F_q(I \otimes r^{-1}s)(m \otimes r)F_q(I \otimes r^{-1}s)^*,$$
$$r \dot{+} s = F_q(r^{-1}s) r F_q(r^{-1}s)^*.$$

and the statement follows.

Operator mapping $\dot{+}:\mathcal{F}^2\longrightarrow\mathcal{F}.$

Theorem

The closure of the sum is an operator mapping from \mathcal{F}^2 into \mathcal{F} :

$$\mathcal{F}^2_{\mathcal{H}}
i (r,s) \longmapsto r \dot{+} s \in \mathcal{F}_{\mathcal{H}}.$$

$$\dot{r+s} = F_q(r^{-1}s) r F_q(r^{-1}s)^*.$$

Proof: If r = 0 then the statement is obvious. Therefore we may assume that ker $r = \{0\}$. Let $R = m \otimes r$ and $S = m \otimes s$, where $m \in \mathcal{F}_{K}^{*}$ with ker $m = \{0\}$. Then $(R, S) \in \mathcal{E}_{K \otimes H}$ and we obtain:

$$m \otimes r \dot{+} m \otimes s = F_q(I \otimes r^{-1}s)(m \otimes r)F_q(I \otimes r^{-1}s)^*,$$

$$r \dot{+} s = F_q(r^{-1}s) r F_q(r^{-1}s)^*.$$

and the statement follows.

Theorem (New EF Thm)

Let \mathcal{K} be a Hilbert space and

$$\mathcal{F}_{\mathcal{H}} \ni r \longmapsto F(r) \in \mathcal{U}ni(\mathcal{K} \otimes \mathcal{H})$$

be an operator mapping. Then the following conditions are equivalent:

F(r+s) = F(r)F(s) for any (r, s) ∈ F_H².
There exists t ∈ F_K* such that F(r) = F_q(t ⊗ r) for all r ∈ F_H.

Theorem (New EF Thm)

Let \mathcal{K} be a Hilbert space and

$$\mathcal{F}_{\mathcal{H}} \ni r \longmapsto F(r) \in \mathcal{U}ni(\mathcal{K} \otimes \mathcal{H})$$

be an operator mapping. Then the following conditions are equivalent:

$$F(r+s) = F(r)F(s)$$

for any $(r,s) \in \mathcal{F}^2_{\mathcal{H}}$.

2) There exists $t\in \mathcal{F}_{\mathcal{K}}^{*}$ such that

$$F(r)=F_q(t\otimes r)$$

for all $r \in \mathcal{F}_{\mathcal{H}}$

Theorem (New EF Thm)

Let \mathcal{K} be a Hilbert space and

$$\mathcal{F}_{\mathcal{H}} \ni r \longmapsto F(r) \in \mathcal{U}ni(\mathcal{K} \otimes \mathcal{H})$$

be an operator mapping. Then the following conditions are equivalent:

F(r+s) = F(r)F(s)
for any (r, s) ∈ F²_H.
There exists t ∈ F_K* such that
F(r) = F_q(t ⊗ r)
for all r ∈ F_H.

Proof

Formula (1) shows immediately that condition 2 implies condition 1. We shall prove the converse. Let \mathcal{K}' be a Hilbert space and $m \in \mathcal{F}_{\mathcal{K}'}$ with ker $m = \{0\}$. Then $m \otimes R \in \mathcal{F}_{\mathcal{K}' \otimes \mathcal{H}}$ for any $R \in \mathcal{E}_{\mathcal{H}}$ and we may consider the operator mapping

$\mathcal{E}_{\mathcal{H}} \ni R \longmapsto F(m \otimes R) \in \mathcal{U}ni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{H})$

By condition 1, this operator mapping fulfils the exponential equation (2). Therefore there exists $T \in \mathcal{E}_{\mathcal{K} \otimes \mathcal{K}'}$ such that

$$F(m\otimes R)=F_q(T\otimes R)$$

for all $R \in \mathcal{E}_{\mathcal{H}}$.

Proof

Formula (1) shows immediately that condition 2 implies condition 1. We shall prove the converse. Let \mathcal{K}' be a Hilbert space and $m \in \mathcal{F}_{\mathcal{K}'}$ with ker $m = \{0\}$. Then $m \otimes R \in \mathcal{F}_{\mathcal{K}' \otimes \mathcal{H}}$ for any $R \in \mathcal{E}_{\mathcal{H}}$ and we may consider the operator mapping

$\mathcal{E}_{\mathcal{H}} \ni R \longmapsto F(m \otimes R) \in \mathcal{U}ni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{H})$

By condition 1, this operator mapping fulfils the exponential equation (2). Therefore there exists $T \in \mathcal{E}_{\mathcal{K} \otimes \mathcal{K}'}$ such that

$$F(m\otimes R)=F_q(T\otimes R)$$

for all $R \in \mathcal{E}_{\mathcal{H}}$.

Proof

Formula (1) shows immediately that condition 2 implies condition 1. We shall prove the converse. Let \mathcal{K}' be a Hilbert space and $m \in \mathcal{F}_{\mathcal{K}'}$ with ker $m = \{0\}$. Then $m \otimes R \in \mathcal{F}_{\mathcal{K}' \otimes \mathcal{H}}$ for any $R \in \mathcal{E}_{\mathcal{H}}$ and we may consider the operator mapping

$$\mathcal{E}_{\mathcal{H}} \ni R \longmapsto F(m \otimes R) \in \mathcal{U}ni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{H})$$

By condition 1, this operator mapping fulfils the exponential equation (2). Therefore there exists $T \in \mathcal{E}_{\mathcal{K} \otimes \mathcal{K}'}$ such that

$$F(m\otimes R)=F_q(T\otimes R)$$

for all $R \in \mathcal{E}_{\mathcal{H}}$.

$F(m \otimes R) = F_q(T \otimes R) \in \mathcal{U}ni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{H})$ for all $R \in \mathcal{E}_{\mathcal{H}}$. Inserting $R = m \otimes s$ (where $s \in \mathcal{F}_{\mathcal{H}}^*$) we see that

 $F(m \otimes m \otimes s) = F_q(T \otimes m \otimes s) \in Uni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{K}' \otimes \mathcal{H}).$

Operator $m \otimes m$ commutes with the flip $\Sigma_{\mathcal{K}'}$. Therefore $T \otimes m$ commutes with $I_{\mathcal{K}} \otimes \Sigma_{\mathcal{K}'}$. It implies that $T = t \otimes m$, where t is an operator acting on \mathcal{K} . One can easily verify that $t \in \mathcal{F}_{\mathcal{K}}^*$. Now our formula takes the form

 $F(m\otimes R)=F_q(t\otimes m\otimes R)$

 $F(m \otimes R) = F_q(T \otimes R) \in \mathcal{U}ni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{H})$ for all $R \in \mathcal{E}_{\mathcal{H}}$. Inserting $R = m \otimes s$ (where $s \in \mathcal{F}_{\mathcal{H}}^*$) we see that

$F(m \otimes m \otimes s) = F_q(T \otimes m \otimes s) \in Uni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{K}' \otimes \mathcal{H}).$

Operator $m \otimes m$ commutes with the flip $\Sigma_{\mathcal{K}'}$. Therefore $T \otimes m$ commutes with $I_{\mathcal{K}} \otimes \Sigma_{\mathcal{K}'}$. It implies that $T = t \otimes m$, where t is an operator acting on \mathcal{K} . One can easily verify that $t \in \mathcal{F}_{\mathcal{K}}^*$. Now our formula takes the form

 $F(m\otimes R)=F_q(t\otimes m\otimes R)$

 $F(m \otimes R) = F_q(T \otimes R) \in \mathcal{U}ni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{H})$ for all $R \in \mathcal{E}_{\mathcal{H}}$. Inserting $R = m \otimes s$ (where $s \in \mathcal{F}_{\mathcal{H}}^*$) we see that

 $F(m \otimes m \otimes s) = F_q(T \otimes m \otimes s) \in Uni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{K}' \otimes \mathcal{H}).$

Operator $m \otimes m$ commutes with the flip $\Sigma_{\mathcal{K}'}$. Therefore $T \otimes m$ commutes with $I_{\mathcal{K}} \otimes \Sigma_{\mathcal{K}'}$. It implies that $T = t \otimes m$, where t is an operator acting on \mathcal{K} . One can easily verify that $t \in \mathcal{F}_{\mathcal{K}}^*$. Now our formula takes the form

 $F(m\otimes R)=F_q(t\otimes m\otimes R)$

 $F(m \otimes R) = F_q(T \otimes R) \in \mathcal{U}ni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{H})$ for all $R \in \mathcal{E}_{\mathcal{H}}$. Inserting $R = m \otimes s$ (where $s \in \mathcal{F}_{\mathcal{H}}^*$) we see that

 $F(m \otimes m \otimes s) = F_q(T \otimes m \otimes s) \in Uni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{K}' \otimes \mathcal{H}).$

Operator $m \otimes m$ commutes with the flip $\Sigma_{\mathcal{K}'}$. Therefore $T \otimes m$ commutes with $I_{\mathcal{K}} \otimes \Sigma_{\mathcal{K}'}$. It implies that $T = t \otimes m$, where t is an operator acting on \mathcal{K} . One can easily verify that $t \in \mathcal{F}_{\mathcal{K}}^*$. Now our formula takes the form

 $F(m\otimes R)=F_q(t\otimes m\otimes R)$

 $F(m \otimes R) = F_q(T \otimes R) \in \mathcal{U}ni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{H})$ for all $R \in \mathcal{E}_{\mathcal{H}}$. Inserting $R = m \otimes s$ (where $s \in \mathcal{F}_{\mathcal{H}}^*$) we see that

 $F(m \otimes m \otimes s) = F_q(T \otimes m \otimes s) \in Uni(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{K}' \otimes \mathcal{H}).$

Operator $m \otimes m$ commutes with the flip $\Sigma_{\mathcal{K}'}$. Therefore $T \otimes m$ commutes with $I_{\mathcal{K}} \otimes \Sigma_{\mathcal{K}'}$. It implies that $T = t \otimes m$, where t is an operator acting on \mathcal{K} . One can easily verify that $t \in \mathcal{F}_{\mathcal{K}}^*$. Now our formula takes the form

$$F(m \otimes R) = F_q(t \otimes m \otimes R)$$

Quantum E(2)-group.

The domain G introduced below plays the role of quantum space E(2). For any Hilbert space H we set

$$\mathcal{G}_{\mathcal{H}} = \left\{ (u,m) \in \mathcal{U}ni(\mathcal{H}) \times \mathcal{F}_{\mathcal{H}} : umu^* = q^2m \right\}$$

Then \mathcal{G} is a closed complete operator domain. For any $g = (u, m) \in \mathcal{G}_{\mathcal{H}}$ and $g' = (u', m') \in \mathcal{G}_{\mathcal{H}'}$ we set $g \bigoplus g' = (u \otimes u', u \otimes m' + m \otimes l_{\mathcal{H}'}).$

Theorem

Let $g \in \mathcal{G}_{\mathcal{H}}$, $g' \in \mathcal{G}_{\mathcal{H}'}$ and $g'' = \in \mathcal{G}_{\mathcal{H}''}$. Then

 $g \bigoplus g' \in \mathcal{G}_{\mathcal{H} \otimes \mathcal{H}'}$

Quantum E(2)-group.

The domain G introduced below plays the role of quantum space E(2). For any Hilbert space H we set

$$\mathcal{G}_{\mathcal{H}} = \left\{ (u,m) \in \mathcal{U} \textit{ni}(\mathcal{H}) imes \mathcal{F}_{\mathcal{H}} : umu^* = q^2m
ight\}$$

Then \mathcal{G} is a closed complete operator domain. For any $g = (u, m) \in \mathcal{G}_{\mathcal{H}}$ and $g' = (u', m') \in \mathcal{G}_{\mathcal{H}'}$ we set

$$g \bigoplus g' = (u \otimes u', u \otimes m' \dot{+} m \otimes l_{\mathcal{H}'}).$$

Theorem

Let $g \in \mathcal{G}_{\mathcal{H}}$, $g' \in \mathcal{G}_{\mathcal{H}'}$ and $g'' = \in \mathcal{G}_{\mathcal{H}''}$. Then

 $g \bigoplus g' \in \mathcal{G}_{\mathcal{H} \otimes \mathcal{H}'}$

$(g \oplus g') \oplus g'' = g \oplus (g' \oplus g'')$

Quantum E(2)-group.

The domain G introduced below plays the role of quantum space E(2). For any Hilbert space H we set

$$\mathcal{G}_{\mathcal{H}} = \left\{ (u,m) \in \mathcal{U} \textit{ni}(\mathcal{H}) imes \mathcal{F}_{\mathcal{H}} : umu^* = q^2m
ight\}$$

Then \mathcal{G} is a closed complete operator domain. For any $g = (u, m) \in \mathcal{G}_{\mathcal{H}}$ and $g' = (u', m') \in \mathcal{G}_{\mathcal{H}'}$ we set

$$g \bigoplus g' = (u \otimes u', u \otimes m' + m \otimes I_{\mathcal{H}'}).$$

Theorem

Let
$$g \in \mathcal{G}_{\mathcal{H}}$$
, $g' \in \mathcal{G}_{\mathcal{H}'}$ and $g'' = \in \mathcal{G}_{\mathcal{H}''}$. Then

$$g \bigoplus g' \in \mathcal{G}_{\mathcal{H} \otimes \mathcal{H}'}$$

$$(g \bigoplus g') \bigoplus g'' = g \bigoplus (g' \bigoplus g'')$$

The only nontrivial statement is:

 $u\otimes m'\dot{+}m\otimes I_{\mathcal{H}'}\in \mathcal{F}_{\mathcal{H}\otimes\mathcal{H}'}.$

To prove it it is enough to notice that

 $(u \otimes m', m \otimes l_{\mathcal{H}'}) \in \mathcal{F}^2_{\mathcal{H} \otimes \mathcal{H}'}$

and use the fact that

$$\dot{+}:\mathcal{F}^2\longrightarrow\mathcal{F}.$$

The only nontrivial statement is:

$$u\otimes m'\dot{+}m\otimes I_{\mathcal{H}'}\in \mathcal{F}_{\mathcal{H}\otimes\mathcal{H}'}.$$

To prove it it is enough to notice that

$$(u \otimes m', m \otimes l_{\mathcal{H}'}) \in \mathcal{F}^2_{\mathcal{H} \otimes \mathcal{H}'}$$

and use the fact that

$$\dot{+}:\mathcal{F}^2\longrightarrow\mathcal{F}.$$

The only nontrivial statement is:

$$u\otimes m'\dot{+}m\otimes I_{\mathcal{H}'}\in \mathcal{F}_{\mathcal{H}\otimes\mathcal{H}'}.$$

To prove it it is enough to notice that

$$(u \otimes m', m \otimes I_{\mathcal{H}'}) \in \mathcal{F}^2_{\mathcal{H} \otimes \mathcal{H}'}$$

and use the fact that

$$\dot{+}:\mathcal{F}^2\longrightarrow\mathcal{F}.$$

Unitary representations

For abelian locally compact groups we are interested in the space of characters. For non-abelian groups we look for strongly continuous unitary representations. For quantum groups the two notions unify.

Definition

Let \mathcal{K} be a Hilbert space and

$$\mathcal{G}_{\mathcal{H}} \ni g \longmapsto U(g) \in \mathcal{U}ni(\mathcal{K} \otimes \mathcal{H})$$

be an operator mapping. We say that U is a unitary representation of quantum E(2) acting on \mathcal{K} if

 $U(g \oplus g') = U(g)_{12}U(g')_{13}$

For abelian locally compact groups we are interested in the space of characters. For non-abelian groups we look for strongly continuous unitary representations. For quantum groups the two notions unify.

Definition

Let \mathcal{K} be a Hilbert space and

$$\mathcal{G}_{\mathcal{H}} \ni g \longmapsto U(g) \in \mathcal{U}$$
ni $(\mathcal{K} \otimes \mathcal{H})$

be an operator mapping. We say that U is a unitary representation of quantum E(2) acting on \mathcal{K} if

$$U(g \oplus g') = U(g)_{12}U(g')_{13}$$

Our aim is to find all unitary representations of quantum E(2). The are labelled by the operator domain $\hat{\mathcal{G}}$. For any Hilbert space \mathcal{K} we set

$$\hat{\mathcal{G}}_{\mathcal{K}} = \left\{ egin{array}{cc} \hat{N} ext{ is a selfadjoint operator} \ \hat{N}, \hat{m}) : & ext{acting on } \mathcal{K}, \operatorname{\mathsf{Sp}} N \subset \mathbb{Z}, \ \hat{m} \in \mathcal{F}_{\mathcal{K}}^*, \ \hat{N}\hat{m} = \hat{m}(\hat{N}+I) \end{array}
ight\}$$

For any $g = (u, m) \in \mathcal{G}_{\mathcal{H}}$ and $\hat{g} = (\hat{N}, \hat{m}) \in \hat{\mathcal{G}}_{\mathcal{K}}$ we consider the unitary operator

$$U(\hat{g},g) = F_q(\hat{m}\otimes m) (I_{\mathcal{K}}\otimes u)^{\hat{N}\otimes I_{\mathcal{H}}}$$

acting on $\mathcal{K} \otimes \mathcal{H}$. With this notation we have:

Our aim is to find all unitary representations of quantum E(2). The are labelled by the operator domain $\hat{\mathcal{G}}$. For any Hilbert space \mathcal{K} we set

$$\hat{\mathcal{G}}_{\mathcal{K}} = \left\{ \begin{pmatrix} \hat{N} \text{ is a selfadjoint operator} \\ (\hat{N}, \hat{m}) : & \text{acting on } \mathcal{K}, \mathsf{Sp } N \subset \mathbb{Z}, \\ \hat{m} \in \mathcal{F}_{\mathcal{K}}^*, \ \hat{N}\hat{m} = \hat{m}(\hat{N} + I) \end{array} \right\}$$

For any $g = (u, m) \in \mathcal{G}_{\mathcal{H}}$ and $\hat{g} = (\hat{N}, \hat{m}) \in \hat{\mathcal{G}}_{\mathcal{K}}$ we consider the unitary operator

$$U(\hat{g},g) = F_q(\hat{m} \otimes m) \left(I_{\mathcal{K}} \otimes u \right)^{\hat{N} \otimes I_{\mathcal{H}}}$$

acting on $\mathcal{K}\otimes\mathcal{H}$. With this notation we have:

Theorem

Let ${\mathcal K}$ be a Hilbert space and $\hat{g}\in \hat{\mathcal{G}}_{{\mathcal K}}.$ Then

$$\mathcal{G}_{\mathcal{H}}
i g \longmapsto U(\hat{g},g) \in \mathcal{U}\mathit{ni}(\mathcal{K} \otimes \mathcal{H})$$

is a unitary representation of E(2). Any unitary representation of E(2) is of this form.

Proof: More difficult part of the theorem is the statement saying that any representation of E(2) is defined by an element of $\hat{\mathcal{G}}$. Let $\mathcal{G}_{\mathcal{H}} \ni g \longmapsto U(g) \in Uni(\mathcal{K} \otimes \mathcal{H})$ be an operator mapping satisfying the character equation:

$U(g)_{12}U(g')_{13}=U(g \oplus g')$

Theorem

Let ${\mathcal K}$ be a Hilbert space and $\hat{g}\in \hat{\mathcal{G}}_{{\mathcal K}}.$ Then

$$\mathcal{G}_{\mathcal{H}} \ni g \longmapsto \mathcal{U}(\hat{g},g) \in \mathcal{U}\mathit{ni}(\mathcal{K} \otimes \mathcal{H})$$

is a unitary representation of E(2). Any unitary representation of E(2) is of this form.

Proof: More difficult part of the theorem is the statement saying that any representation of E(2) is defined by an element of $\hat{\mathcal{G}}$. Let $\mathcal{G}_{\mathcal{H}} \ni g \longmapsto U(g) \in Uni(\mathcal{K} \otimes \mathcal{H})$ be an operator mapping satisfying the character equation:

$U(g)_{12}U(g')_{13}=U(g \oplus g')$

Theorem

Let ${\mathcal K}$ be a Hilbert space and $\hat{g}\in \hat{\mathcal{G}}_{{\mathcal K}}.$ Then

$$\mathcal{G}_{\mathcal{H}} \ni g \longmapsto \mathcal{U}(\hat{g},g) \in \mathcal{U}\mathsf{ni}(\mathcal{K} \otimes \mathcal{H})$$

is a unitary representation of E(2). Any unitary representation of E(2) is of this form.

Proof: More difficult part of the theorem is the statement saying that any representation of E(2) is defined by an element of $\hat{\mathcal{G}}$. Let $\mathcal{G}_{\mathcal{H}} \ni g \longmapsto U(g) \in Uni(\mathcal{K} \otimes \mathcal{H})$ be an operator mapping satisfying the character equation:

$U(g)_{12}U(g')_{13}=U(g \oplus g')$

Theorem

Let ${\mathcal K}$ be a Hilbert space and $\hat{g}\in \hat{\mathcal{G}}_{{\mathcal K}}.$ Then

$$\mathcal{G}_{\mathcal{H}} \ni g \longmapsto \mathcal{U}(\hat{g},g) \in \mathcal{U}\mathsf{ni}(\mathcal{K} \otimes \mathcal{H})$$

is a unitary representation of E(2). Any unitary representation of E(2) is of this form.

Proof: More difficult part of the theorem is the statement saying that any representation of E(2) is defined by an element of $\hat{\mathcal{G}}$. Let $\mathcal{G}_{\mathcal{H}} \ni g \longmapsto U(g) \in Uni(\mathcal{K} \otimes \mathcal{H})$ be an operator mapping satisfying the character equation:

$$U(g)_{12}U(g')_{13}=U(g \oplus g')$$

Take $\mathcal{H} = \mathcal{H}' = \mathbb{C}$, $g = (\alpha, 0)$ and $g' = (\beta, 0)$, where $\alpha, \beta \in S^1$. Then $g \bigoplus g' = (\alpha\beta, 0)$ and the character equation shows that

$$U(\alpha\beta,0) = U(\alpha,0)U(\beta,0)$$

Therefore $U(\alpha, 0) = \alpha^{\hat{N}}$, where \hat{N} is a selfadjoint operator acting on \mathcal{K} with integer spectrum.

Take $\mathcal{H}' = \mathbb{C}$, g = (u, m) and $g' = (\alpha, 0)$, where $\alpha \in S^1$. Then $g \bigoplus g' = (\alpha u, m)$ and the character equation shows that

 $U(\alpha u, m) = U(u, m)(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})$

Take $\mathcal{H} = \mathcal{H}' = \mathbb{C}$, $g = (\alpha, 0)$ and $g' = (\beta, 0)$, where $\alpha, \beta \in S^1$. Then $g \bigoplus g' = (\alpha\beta, 0)$ and the character equation shows that

$$U(\alpha\beta,0) = U(\alpha,0)U(\beta,0)$$

Therefore $U(\alpha, 0) = \alpha^{\hat{N}}$, where \hat{N} is a selfadjoint operator acting on \mathcal{K} with integer spectrum.

Take $\mathcal{H}' = \mathbb{C}$, g = (u, m) and $g' = (\alpha, 0)$, where $\alpha \in S^1$. Then $g \bigoplus g' = (\alpha u, m)$ and the character equation shows that

$$U(\alpha u, m) = U(u, m)(\alpha^N \otimes I_{\mathcal{H}})$$

$$U(\alpha u, m) = U(u, m)(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})$$

Let $\Phi(u, m) = U(u, m)(I_{\mathcal{K}} \otimes u)^{-\hat{N} \otimes I_{\mathcal{H}}}$. Then

 $\Phi(\alpha u, m) = \Phi(u, m),$ $\Phi(vu, m) = \Phi(u, m)$

for any $v \in Uni(\mathcal{H})$ commuting with u and m. Taking $v = (Phase m)^2 u^*$ we get

 $\Phi(u, m) = \Phi((\text{Phase } m)^2, m) = F(m)$

 $\Phi(u,m)$ does not depend on u. Notice that $F(0) = I_{\mathcal{K}}$

$$U(u,m)=F(m)(I_{\mathcal{K}}\otimes u)^{\tilde{N}\otimes I_{\mathcal{H}}}$$

$$U(\alpha u, m) = U(u, m)(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})$$

Let $\Phi(u, m) = U(u, m)(I_{\mathcal{K}} \otimes u)^{-\hat{N} \otimes I_{\mathcal{H}}}$. Then

$$\Phi(\alpha u, m) = \Phi(u, m),$$

$$\Phi(vu, m) = \Phi(u, m)$$

for any $v \in Uni(\mathcal{H})$ commuting with u and m. Taking $v = (Phase m)^2 u^*$ we get

 $\Phi(u, m) = \Phi((\text{Phase } m)^2, m) = F(m)$

 $\Phi(u,m)$ does not depend on u. Notice that $F(0) = I_{\mathcal{K}}$

$$U(u,m)=F(m)(I_{\mathcal{K}}\otimes u)^{\tilde{N}\otimes I_{\mathcal{H}}}$$

$$U(\alpha u, m) = U(u, m)(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})$$

Let $\Phi(u, m) = U(u, m)(I_{\mathcal{K}} \otimes u)^{-\hat{N} \otimes I_{\mathcal{H}}}$. Then

$$\Phi(\alpha u, m) = \Phi(u, m),$$

$$\Phi(vu, m) = \Phi(u, m)$$

for any $v \in Uni(\mathcal{H})$ commuting with u and m. Taking $v = (Phase m)^2 u^*$ we get

$$\Phi(u, m) = \Phi((\text{Phase } m)^2, m) = F(m)$$

 $\Phi(u, m)$ does not depend on u. Notice that $F(0) = I_{\mathcal{K}}$

$$U(u,m)=F(m)(I_{\mathcal{K}}\otimes u)^{N\otimes I_{\mathcal{H}}}$$

So far we have shown that

$$U(u,m) = F(m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}},$$

where F is an operator function on \mathcal{F} with values in unitary operators.

Take $\mathcal{H} = \mathbb{C}$, $g = (\alpha, 0)$ and g' = (u, m), where $\alpha \in S^1$. Then $g \oplus g' = (\alpha u, \alpha m)$ and the character equation shows that $(\alpha^{\hat{N}} \otimes l_{\mathcal{H}})F(m)(l_{\mathcal{K}} \otimes u)^{\hat{N} \otimes l_{\mathcal{H}}} = F(\alpha m)(l_{\mathcal{K}} \otimes \alpha u)^{\hat{N} \otimes l_{\mathcal{H}}}$ $(\alpha^{\hat{N}} \otimes l_{\mathcal{H}})F(m)(\alpha^{-\hat{N}} \otimes l_{\mathcal{H}}) = F(\alpha m)$ $(l_{\mathcal{K}} \otimes u \otimes l_{\mathcal{H}})^{\hat{N} \otimes l_{\mathcal{H} \otimes \mathcal{H}}}F(l_{\mathcal{H}} \otimes m)(l_{\mathcal{K}} \otimes u \otimes l_{\mathcal{H}})^{-\hat{N} \otimes l_{\mathcal{H} \otimes \mathcal{H}}} = F(u \otimes m)$

So far we have shown that

$$U(u,m) = F(m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}},$$

where F is an operator function on \mathcal{F} with values in unitary operators.

Take $\mathcal{H} = \mathbb{C}$, $g = (\alpha, 0)$ and g' = (u, m), where $\alpha \in S^1$. Then $g \bigoplus g' = (\alpha u, \alpha m)$ and the character equation shows that $(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})F(m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}} = F(\alpha m)(I_{\mathcal{K}} \otimes \alpha u)^{\hat{N} \otimes I_{\mathcal{H}}}$ $(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})F(m)(\alpha^{-\hat{N}} \otimes I_{\mathcal{H}}) = F(\alpha m)$ $(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}}F(I_{\mathcal{H}} \otimes m)(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{-\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}} = F(u \otimes m)$

So far we have shown that

$$U(u,m) = F(m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}},$$

where F is an operator function on \mathcal{F} with values in unitary operators.

Take $\mathcal{H} = \mathbb{C}$, $g = (\alpha, 0)$ and g' = (u, m), where $\alpha \in S^1$. Then $g \bigoplus g' = (\alpha u, \alpha m)$ and the character equation shows that $(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})F(m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}} = F(\alpha m)(I_{\mathcal{K}} \otimes \alpha u)^{\hat{N} \otimes I_{\mathcal{H}}}$ $(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})F(m)(\alpha^{-\hat{N}} \otimes I_{\mathcal{H}}) = F(\alpha m)$ $(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}}F(I_{\mathcal{H}} \otimes m)(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{-\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}} = F(u \otimes m)$

So far we have shown that

$$U(u,m) = F(m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}},$$

where F is an operator function on \mathcal{F} with values in unitary operators.

Take $\mathcal{H} = \mathbb{C}$, $g = (\alpha, 0)$ and g' = (u, m), where $\alpha \in S^1$. Then $g \bigoplus g' = (\alpha u, \alpha m)$ and the character equation shows that $(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})F(m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}} = F(\alpha m)(I_{\mathcal{K}} \otimes \alpha u)^{\hat{N} \otimes I_{\mathcal{H}}}$ $(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})F(m)(\alpha^{-\hat{N}} \otimes I_{\mathcal{H}}) = F(\alpha m)$ $(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}}F(I_{\mathcal{H}} \otimes m)(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{-\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}} = F(u \otimes m)$

$(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}} F(I_{\mathcal{H}} \otimes m) = F(u \otimes m)(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}}$ $U(u, m) = F(m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}}$

Using the character equation in full generality we have:

 $F(u \otimes m + m \otimes I_{\mathcal{H}})(I_{\mathcal{K}} \otimes u \otimes u)^{\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}} = F(m \otimes I_{\mathcal{H}})(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}} F(I_{\mathcal{H}} \otimes m)(I_{\mathcal{K} \otimes \mathcal{H}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}},$

 $F(u \otimes m + m \otimes l_{\mathcal{H}}) = F(m \otimes l_{\mathcal{H}}) F(u \otimes m).$

F(r+s) = F(r) F(s),

where $(r, s) = (m \otimes l_{\mathcal{H}}, u \otimes m)$ is a generic element of $\mathcal{F}^2_{\mathcal{H} \otimes \mathcal{H}}$.

$$(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}} F(I_{\mathcal{H}} \otimes m) = F(u \otimes m)(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}}$$
$$U(u, m) = F(m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}}$$

Using the character equation in full generality we have:

$$F(u \otimes m + m \otimes I_{\mathcal{H}})(I_{\mathcal{K}} \otimes u \otimes u)^{\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}} = F(m \otimes I_{\mathcal{H}})(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}} F(I_{\mathcal{H}} \otimes m)(I_{\mathcal{K} \otimes \mathcal{H}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}},$$

 $F(u \otimes m + m \otimes I_{\mathcal{H}}) = F(m \otimes I_{\mathcal{H}}) F(u \otimes m).$

F(r+s) = F(r) F(s),

where $(r, s) = (m \otimes I_{\mathcal{H}}, u \otimes m)$ is a generic element of $\mathcal{F}^2_{\mathcal{H} \otimes \mathcal{H}}$

$$(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}} F(I_{\mathcal{H}} \otimes m) = F(u \otimes m)(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}}$$
$$U(u, m) = F(m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}}$$

Using the character equation in full generality we have:

$$F(u \otimes m + m \otimes I_{\mathcal{H}})(I_{\mathcal{K}} \otimes u \otimes u)^{\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}} = F(m \otimes I_{\mathcal{H}})(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}} F(I_{\mathcal{H}} \otimes m)(I_{\mathcal{K} \otimes \mathcal{H}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}},$$

 $F(u \otimes m + m \otimes I_{\mathcal{H}}) = F(m \otimes I_{\mathcal{H}}) F(u \otimes m).$

F(r+s) = F(r) F(s),

where $(r, s) = (m \otimes I_{\mathcal{H}}, u \otimes m)$ is a generic element of $\mathcal{F}^2_{\mathcal{H} \otimes \mathcal{H}}$

$$(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}} F(I_{\mathcal{H}} \otimes m) = F(u \otimes m)(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H}} \otimes \mathcal{H}}$$
$$U(u, m) = F(m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}}$$

Using the character equation in full generality we have:

$$F(u \otimes m + m \otimes I_{\mathcal{H}})(I_{\mathcal{K}} \otimes u \otimes u)^{\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}} = F(m \otimes I_{\mathcal{H}})(I_{\mathcal{K}} \otimes u \otimes I_{\mathcal{H}})^{\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}} F(I_{\mathcal{H}} \otimes m)(I_{\mathcal{K} \otimes \mathcal{H}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H} \otimes \mathcal{H}}},$$

$$F(u \otimes m + m \otimes I_{\mathcal{H}}) = F(m \otimes I_{\mathcal{H}}) F(u \otimes m).$$

$$F(r\dot{+}s)=F(r)F(s),$$

where $(r, s) = (m \otimes I_{\mathcal{H}}, u \otimes m)$ is a generic element of $\mathcal{F}^2_{\mathcal{H} \otimes \mathcal{H}}$.

Proof (cont.)

Using New EF Thm we see that there exists $\hat{m} \in \mathcal{F}_{\mathcal{K}}^*$ such that $F(m) = F_q(\hat{m} \otimes m)$

for all $m \in \mathcal{F}_{\mathcal{H}}$.

$$U(u,m) = F_q(\hat{m} \otimes m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}} = U(\hat{N},\hat{m};u,m)$$

To end the proof we use the established earlier formula:

$$(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})F(m)(\alpha^{-\hat{N}} \otimes I_{\mathcal{H}}) = F(\alpha m).$$

Therefore

$$\alpha^{\hat{N}}\hat{m}\alpha^{-\hat{N}} = \alpha\hat{m}$$

and $\hat{N}\hat{m}=\hat{m}(\hat{N}+l_{\mathcal{K}})$. It shows that $(\hat{N},\hat{m})\in\hat{\mathcal{G}}_{\mathcal{K}}$

Proof (cont.)

Using New EF Thm we see that there exists $\hat{m} \in \mathcal{F}_{\mathcal{K}}^*$ such that $F(m) = F_q(\hat{m} \otimes m)$

for all $m \in \mathcal{F}_{\mathcal{H}}$.

$$U(u,m) = F_q(\hat{m} \otimes m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}} = U(\hat{N},\hat{m};u,m)$$

To end the proof we use the established earlier formula:

$$(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})F(m)(\alpha^{-\hat{N}} \otimes I_{\mathcal{H}}) = F(\alpha m).$$

Therefore

$$\alpha^{\hat{N}}\hat{m}\alpha^{-\hat{N}} = \alpha\hat{m}$$

and $\hat{N}\hat{m}=\hat{m}(\hat{N}+l_{\mathcal{K}})$. It shows that $(\hat{N},\hat{m})\in\hat{\mathcal{G}}_{\mathcal{K}}$

Proof (cont.)

Using New EF Thm we see that there exists $\hat{m} \in \mathcal{F}_{\mathcal{K}}^*$ such that for all $m \in \mathcal{F}_{\mathcal{H}}$.

$$U(u,m) = F_q(\hat{m} \otimes m)(I_{\mathcal{K}} \otimes u)^{\hat{N} \otimes I_{\mathcal{H}}} = U(\hat{N},\hat{m};u,m)$$

To end the proof we use the established earlier formula:

$$(\alpha^{\hat{N}} \otimes I_{\mathcal{H}})F(m)(\alpha^{-\hat{N}} \otimes I_{\mathcal{H}}) = F(\alpha m).$$

Therefore

$$\alpha^{\hat{N}}\hat{m}\alpha^{-\hat{N}} = \alpha\hat{m}$$

and $\hat{N}\hat{m} = \hat{m}(\hat{N} + I_{\mathcal{K}})$. It shows that $(\hat{N}, \hat{m}) \in \hat{\mathcal{G}}_{\mathcal{K}}$

Let
$$\hat{g}\in\hat{\mathcal{G}}_{\mathcal{K}}$$
 and $\hat{g}'\in\hat{\mathcal{G}}_{\mathcal{K}'}.$ Then

$$\mathcal{G}_{\mathcal{H}} \ni g \longmapsto \textit{U}(\hat{g}',g)_{23}\textit{U}(\hat{g},g)_{13} \in \textit{Uni}(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{H})$$

is a unitary representation of E(2) acting on $\mathcal{K} \otimes \mathcal{K}'$. By our theorem this representation is related to an element of $\hat{\mathcal{G}}_{\mathcal{K} \otimes \mathcal{K}'}$. This element is denoted by $\hat{g} \bigoplus \hat{g}'$. So we have

$$U(\hat{g} \bigoplus \hat{g}',g) = U(\hat{g}',g)_{23}U(\hat{g},g)_{13}.$$

$$\hat{g} \bigoplus \hat{g} = (N \otimes I_{\mathcal{K}'} \dot{+} I_{\mathcal{K}} \otimes \hat{N}', \ \hat{m} \otimes q^{2\hat{N}'} \dot{+} I_{\mathcal{K}} \otimes \hat{m}')$$

Let
$$\hat{g}\in\hat{\mathcal{G}}_{\mathcal{K}}$$
 and $\hat{g}'\in\hat{\mathcal{G}}_{\mathcal{K}'}.$ Then

$$\mathcal{G}_{\mathcal{H}} \ni g \longmapsto \textit{U}(\hat{g}',g)_{23}\textit{U}(\hat{g},g)_{13} \in \textit{Uni}(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{H})$$

is a unitary representation of E(2) acting on $\mathcal{K} \otimes \mathcal{K}'$. By our theorem this representation is related to an element of $\hat{\mathcal{G}}_{\mathcal{K} \otimes \mathcal{K}'}$. This element is denoted by $\hat{g} \bigoplus \hat{g}'$. So we have

$$U(\hat{g} \bigoplus \hat{g}',g) = U(\hat{g}',g)_{23}U(\hat{g},g)_{13}.$$

$$\hat{g} \bigoplus \hat{g} = (N \otimes I_{\mathcal{K}'} \dot{+} I_{\mathcal{K}} \otimes \hat{N}', \ \hat{m} \otimes q^{2\hat{N}'} \dot{+} I_{\mathcal{K}} \otimes \hat{m}')$$

Let
$$\hat{g}\in\hat{\mathcal{G}}_{\mathcal{K}}$$
 and $\hat{g}'\in\hat{\mathcal{G}}_{\mathcal{K}'}.$ Then

$$\mathcal{G}_{\mathcal{H}} \ni g \longmapsto \mathcal{U}(\hat{g}',g)_{23}\mathcal{U}(\hat{g},g)_{13} \in \mathcal{U}\textit{ni}(\mathcal{K}\otimes\mathcal{K}'\otimes\mathcal{H})$$

is a unitary representation of E(2) acting on $\mathcal{K} \otimes \mathcal{K}'$. By our theorem this representation is related to an element of $\hat{\mathcal{G}}_{\mathcal{K} \otimes \mathcal{K}'}$. This element is denoted by $\hat{g} \bigoplus \hat{g}'$. So we have

$$U(\hat{g} \bigoplus \hat{g}',g) = U(\hat{g}',g)_{23}U(\hat{g},g)_{13}.$$

$$\hat{g} \bigoplus \hat{g} = (N \otimes I_{\mathcal{K}'} \dot{+} I_{\mathcal{K}} \otimes \hat{N}', \ \hat{m} \otimes q^{2\hat{N}'} \dot{+} I_{\mathcal{K}} \otimes \hat{m}')$$

Let
$$\hat{g}\in\hat{\mathcal{G}}_{\mathcal{K}}$$
 and $\hat{g}'\in\hat{\mathcal{G}}_{\mathcal{K}'}.$ Then

$$\mathcal{G}_{\mathcal{H}} \ni g \longmapsto \textit{U}(\hat{g}',g)_{23}\textit{U}(\hat{g},g)_{13} \in \textit{Uni}(\mathcal{K} \otimes \mathcal{K}' \otimes \mathcal{H})$$

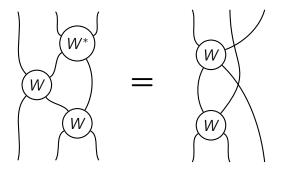
is a unitary representation of E(2) acting on $\mathcal{K} \otimes \mathcal{K}'$. By our theorem this representation is related to an element of $\hat{\mathcal{G}}_{\mathcal{K} \otimes \mathcal{K}'}$. This element is denoted by $\hat{g} \bigoplus \hat{g}'$. So we have

$$U(\hat{g} \bigoplus \hat{g}',g) = U(\hat{g}',g)_{23}U(\hat{g},g)_{13}.$$

$$\hat{g} \bigoplus \hat{g} = (N \otimes I_{\mathcal{K}'} \dot{+} I_{\mathcal{K}} \otimes \hat{N}', \ \hat{m} \otimes q^{2\hat{N}'} \dot{+} I_{\mathcal{K}} \otimes \hat{m}')$$

Let \mathcal{H} be a Hilbert space and W be a unitary operator acting on $\mathcal{H} \otimes \mathcal{H}$. W is called a multiplicative unitary if

 $W_{23}W_{12} = W_{12}W_{13}W_{23}$



A unitary $W \in Uni(\mathcal{H} \otimes \mathcal{H})$ is a modular multiplicative unitary if

- *W* is multiplicative $(W_{23}W_{12} = W_{12}W_{13}W_{23})$
- there exist positive, selfadjoint Q and \hat{Q} on \mathcal{H} such that

$$W(\hat{Q}\otimes Q)W^*=\hat{Q}\otimes Q$$

• we have

$$(x \otimes y | W | z \otimes u) = \left(\overline{z} \otimes Qy | \widetilde{W} | \overline{x} \otimes Q^{-1}u\right)$$

A unitary $W \in Uni(\mathcal{H} \otimes \mathcal{H})$ is a modular multiplicative unitary if

- *W* is multiplicative $(W_{23}W_{12} = W_{12}W_{13}W_{23})$
- there exist positive, selfadjoint Q and \hat{Q} on \mathcal{H} such that

$$W(\hat{Q}\otimes Q)W^*=\hat{Q}\otimes Q$$

• we have

$$(x \otimes y | W | z \otimes u) = \left(\overline{z} \otimes Qy | \widetilde{W} | \overline{x} \otimes Q^{-1}u\right)$$

A unitary $W \in Uni(\mathcal{H} \otimes \mathcal{H})$ is a modular multiplicative unitary if

- *W* is multiplicative $(W_{23}W_{12} = W_{12}W_{13}W_{23})$
- there exist positive, selfadjoint Q and \hat{Q} on \mathcal{H} such that

$$Wig(\hat{Q}\otimes Qig)W^*=\hat{Q}\otimes Q$$

• we have

$$(x \otimes y | W | z \otimes u) = (\overline{z} \otimes Qy | \widetilde{W} | \overline{x} \otimes Q^{-1}u)$$

A unitary $W \in Uni(\mathcal{H} \otimes \mathcal{H})$ is a modular multiplicative unitary if

- *W* is multiplicative $(W_{23}W_{12} = W_{12}W_{13}W_{23})$
- there exist positive, selfadjoint Q and \hat{Q} on \mathcal{H} such that

$$Wig(\hat{Q}\otimes Qig)W^*=\hat{Q}\otimes Q$$

• we have

$$(x \otimes y | W | z \otimes u) = \left(\overline{z} \otimes Qy | \widetilde{W} | \overline{x} \otimes Q^{-1}u\right)$$

- Take modular m.u. $W \in Uni(\mathcal{H} \otimes \mathcal{H})$
- Let $A = \{\omega \otimes \mathrm{id}\}(W) : \omega \in B(\mathcal{H})_*\}^{\mathrm{norm \ closure}} \subset B(\mathcal{H})$
- A is a C*-algebra.
- For $a \in A$ we have $W(a \otimes I_{\mathcal{H}})W^* \in M(A \otimes A)$ and

$$A
i a \mapsto W(a \otimes I_{\mathcal{H}})W^*$$

- Take modular m.u. $W \in Uni(\mathcal{H} \otimes \mathcal{H})$
- Let $A = \{\omega \otimes \mathrm{id}\}(W) : \omega \in B(\mathcal{H})_*\}^{\mathrm{norm \ closure}} \subset B(\mathcal{H})$
- A is a C*-algebra.
- For $a \in A$ we have $W(a \otimes I_{\mathcal{H}})W^* \in M(A \otimes A)$ and

$$A
i a \mapsto W(a \otimes I_{\mathcal{H}})W^*$$

- Take modular m.u. $W \in Uni(\mathcal{H} \otimes \mathcal{H})$
- Let $A = \{\omega \otimes \mathrm{id}\}(W) : \omega \in B(\mathcal{H})_*\}^{\mathsf{norm \ closure}} \subset B(\mathcal{H})$
- A is a C*-algebra.
- For $a \in A$ we have $W(a \otimes I_{\mathcal{H}})W^* \in M(A \otimes A)$ and

$$A
i a \mapsto W(a \otimes I_{\mathcal{H}})W^*$$

- Take modular m.u. $W \in Uni(\mathcal{H} \otimes \mathcal{H})$
- Let $A = \{\omega \otimes \mathrm{id}\}(W) : \omega \in B(\mathcal{H})_*\}^{\mathsf{norm \ closure}} \subset B(\mathcal{H})$
- A is a C*-algebra.
- For $a \in A$ we have $W(a \otimes I_{\mathcal{H}})W^* \in M(A \otimes A)$ and

$$A
i a \longmapsto W(a \otimes I_{\mathcal{H}})W^*$$

- Take modular m.u. $W \in Uni(\mathcal{H} \otimes \mathcal{H})$
- Let $A = \{\omega \otimes \mathrm{id}\}(W) : \omega \in B(\mathcal{H})_*\}^{\mathsf{norm closure}} \subset B(\mathcal{H})$
- A is a C*-algebra.
- For $a \in A$ we have $W(a \otimes I_{\mathcal{H}})W^* \in M(A \otimes A)$ and

$$A
i a \longmapsto W(a \otimes I_{\mathcal{H}})W^*$$

- Take modular m.u. $W \in Uni(\mathcal{H} \otimes \mathcal{H})$
- Let $A = \{\omega \otimes \mathrm{id}\}(W) : \omega \in B(\mathcal{H})_*\}^{\mathsf{norm closure}} \subset B(\mathcal{H})$
- A is a C*-algebra.
- For $a \in A$ we have $W(a \otimes I_{\mathcal{H}})W^* \in M(A \otimes A)$ and

 $A
i a \longmapsto W(a \otimes I_{\mathcal{H}})W^*$

- Take modular m.u. $W \in Uni(\mathcal{H} \otimes \mathcal{H})$
- Let $A = \{\omega \otimes \mathrm{id}\}(W) : \omega \in B(\mathcal{H})_*\}^{\mathsf{norm closure}} \subset B(\mathcal{H})$
- A is a C*-algebra.
- For $a \in A$ we have $W(a \otimes I_{\mathcal{H}})W^* \in M(A \otimes A)$ and

$$A
i a \longmapsto W(a \otimes I_{\mathcal{H}})W^*$$

• We have $(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta$

We have

$$\left\{ \Delta(a)(I \otimes b) : a, b \in A \right\}^{\mathsf{CLS}} = A \otimes A,$$
$$\left\{ (a \otimes I)\Delta(b) : a, b \in A \right\}^{\mathsf{CLS}} = A \otimes A.$$

• There is a closed antimultiplicative map

 $\kappa : (\omega \otimes \mathrm{id})(W) \longmapsto (\omega \otimes \mathrm{id})(W^*)$

• We have $(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta$

We have

$$\left\{ \Delta(a)(I \otimes b) : a, b \in A \right\}^{\mathsf{CLS}} = A \otimes A, \\ \left\{ (a \otimes I) \Delta(b) : a, b \in A \right\}^{\mathsf{CLS}} = A \otimes A.$$

• There is a closed antimultiplicative map

 $\kappa : (\omega \otimes \mathrm{id})(W) \longmapsto (\omega \otimes \mathrm{id})(W^*)$

• We have $(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta$

We have

$$\left\{ \Delta(a)(I \otimes b) : a, b \in A \right\}^{\mathsf{CLS}} = A \otimes A, \\ \left\{ (a \otimes I) \Delta(b) : a, b \in A \right\}^{\mathsf{CLS}} = A \otimes A.$$

• There is a closed antimultiplicative map

 $\kappa : (\omega \otimes \mathrm{id})(W) \longmapsto (\omega \otimes \mathrm{id})(W^*)$

• We have $(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta$

We have

$$\left\{ \Delta(a)(I \otimes b) : a, b \in A \right\}^{\mathsf{CLS}} = A \otimes A, \\ \left\{ (a \otimes I) \Delta(b) : a, b \in A \right\}^{\mathsf{CLS}} = A \otimes A.$$

• There is a closed antimultiplicative map

$$\kappa : (\omega \otimes \mathrm{id})(W) \longmapsto (\omega \otimes \mathrm{id})(W^*)$$

Let $\hat{g} \in \hat{\mathcal{G}}_{\mathcal{H}}$ and $g \in \mathcal{G}_{\mathcal{H}}$ (the same Hilbert space!). We say that (\hat{g}, g) is a Heisenberg pair if $U(\hat{g}, g')(g \otimes I_{\mathcal{K}})U(\hat{g}, g')^* = g \bigoplus g'$ for any $g' \in \mathcal{G}_{\mathcal{K}}$. For any Hilbert space \mathcal{H} we set $\mathfrak{H}_{\mathcal{H}} = \left\{ (\hat{g}, g) \in \hat{\mathcal{G}}_{\mathcal{H}} \times \mathcal{G}_{\mathcal{H}} : \begin{array}{c} (\hat{g}, g) \text{ is a} \\ \text{Heisenberg pair} \end{array} \right\}$

Then \mathfrak{H} is a closed complete operator domain.

Let $\hat{g} \in \hat{\mathcal{G}}_{\mathcal{H}}$ and $g \in \mathcal{G}_{\mathcal{H}}$ (the same Hilbert space!). We say that (\hat{g}, g) is a Heisenberg pair if $U(\hat{g}, g')(g \otimes I_{\mathcal{K}})U(\hat{g}, g')^* = g \bigoplus g'$ for any $g' \in \mathcal{G}_{\mathcal{K}}$. For any Hilbert space \mathcal{H} we set $\mathfrak{H}_{\mathcal{H}} = \left\{ (\hat{g}, g) \in \hat{\mathcal{G}}_{\mathcal{H}} \times \mathcal{G}_{\mathcal{H}} : \begin{array}{c} (\hat{g}, g) \text{ is a} \\ \text{Heisenberg pair} \end{array} \right\}$

Then \mathfrak{H} is a closed complete operator domain.

Heisenberg relations and multiplicative unitaries

Theorem

Let \mathcal{H} be a Hilbert space and $(\hat{g}, g) \in \mathfrak{H}_{\mathcal{H}}$. Then

 $W = U(\hat{g},g)$

is a multiplicative unitary acting on $\mathcal{H} \otimes \mathcal{H}$ related to the quantum E(2)-group. Any multiplicative unitary related to the quantum E(2)-group is of this form.

Heisenberg relations and multiplicative unitaries

Theorem

Let \mathcal{H} be a Hilbert space and $(\hat{g}, g) \in \mathfrak{H}_{\mathcal{H}}$. Then

 $W = U(\hat{g},g)$

is a multiplicative unitary acting on $\mathcal{H} \otimes \mathcal{H}$ related to the quantum E(2)-group. Any multiplicative unitary related to the quantum E(2)-group is of this form.

Theorem

Let \hat{N} , \hat{m} , u, m be closed operators acting on a Hilbert space \mathcal{H} . Then $(\hat{N}, \hat{m}, u, m) \in \mathfrak{H}_{\mathcal{H}}$ if and only if the following conditions are satisfied:

•
$$(u, m) \in \mathcal{G}_{\mathcal{H}}$$
, ker $m = \{0\}$,

•
$$u^* \hat{N} u = \hat{N} + I_{\mathcal{H}}$$

- \hat{N} and m strongly commute.
- $\hat{m} = m^{-1}u\dot{+}\hat{r}$, where \hat{r} is a closed operator such that:

•
$$(\hat{N}, \hat{r}) \in \hat{\mathcal{G}}_{\mathcal{H}}$$
,

•
$$u^*\hat{r}u = q^2\hat{r}$$
,

• \hat{r} and m strongly commute.

We say that the Heisenberg pair is of type I if $\hat{r} = 0$.

In this case we put v = Phase m, $N = \log_q |m|$ and $\hat{v} = uv^{-2}$. Then

- \hat{v}, v are unitary,
- \hat{N} , N are selfadjoint with integer spectrum,
- $\hat{v}\hat{N}\hat{v}^* = \hat{N} + I$ and $vNv^* = N + I$,
- (\hat{N}, \hat{v}) strongly commutes with (N, v).

 (\hat{N}, \hat{v}) and (N, v) are Heisenberg pair for the abelian group S^1 . Hence quadruple (\hat{N}, \hat{v}, N, v) is UNIQUE.

Theorem

We say that the Heisenberg pair is of type I if $\hat{r} = 0$.

In this case we put v = Phase m, $N = \log_q |m|$ and $\hat{v} = uv^{-2}$. Then

- $\hat{\boldsymbol{v}}, \boldsymbol{v}$ are unitary,
- \hat{N} , N are selfadjoint with integer spectrum,
- $\hat{v}\hat{N}\hat{v}^* = \hat{N} + I$ and $vNv^* = N + I$,
- (\hat{N}, \hat{v}) strongly commutes with (N, v).

 (\hat{N}, \hat{v}) and (N, v) are Heisenberg pair for the abelian group S^1 . Hence quadruple (\hat{N}, \hat{v}, N, v) is UNIQUE.

Theorem

We say that the Heisenberg pair is of type I if $\hat{r} = 0$.

In this case we put v = Phase m, $N = \log_q |m|$ and $\hat{v} = uv^{-2}$. Then

- $\hat{\boldsymbol{v}}, \boldsymbol{v}$ are unitary,
- \hat{N} , N are selfadjoint with integer spectrum,
- $\hat{v}\hat{N}\hat{v}^* = \hat{N} + I$ and $vNv^* = N + I$,
- (\hat{N}, \hat{v}) strongly commutes with (N, v).

 (\hat{N}, \hat{v}) and (N, v) are Heisenberg pair for the abelian group S^1 . Hence quadruple (\hat{N}, \hat{v}, N, v) is UNIQUE.

Theorem

We say that the Heisenberg pair is of type I if $\hat{r} = 0$.

In this case we put v = Phase m, $N = \log_q |m|$ and $\hat{v} = uv^{-2}$. Then

- $\hat{\boldsymbol{v}}, \boldsymbol{v}$ are unitary,
- \hat{N} , N are selfadjoint with integer spectrum,
- $\hat{v}\hat{N}\hat{v}^* = \hat{N} + I$ and $vNv^* = N + I$,
- (\hat{N}, \hat{v}) strongly commutes with (N, v).

 (\hat{N}, \hat{v}) and (N, v) are Heisenberg pair for the abelian group S^1 . Hence quadruple (\hat{N}, \hat{v}, N, v) is UNIQUE.

Theorem

The case ker $\hat{r} = \{0\}$.

We say that the Heisenberg pair is of type II if ker $\hat{r} = \{0\}$.

In this case we put v = Phase m, $N = \log_q |m|$, $\hat{v} = uv^{-2}$, $\hat{N}' = \log_q |\hat{r}| - \hat{N}$ and $\hat{r}' = q^{-2\hat{N}'}\hat{r}$. Then:

• \hat{v}, v are unitary,

• \hat{N}', N are selfadjoint with integer spectrum,

•
$$\hat{v}\hat{N}'\hat{v}^* = \hat{N}' + I$$
 and $vNv^* = N + I$,

•
$$\hat{r}'\in \mathcal{F}^*$$
, ker $\hat{r}'=\{0\}$

• (\hat{N}', \hat{v}) , (N, v) and \hat{r}' mutually strongly commute.

Theorem

The case ker $\hat{r} = \{0\}$.

We say that the Heisenberg pair is of type II if ker $\hat{r} = \{0\}$. In this case we put v = Phase m, $N = \log_q |m|$, $\hat{v} = uv^{-2}$, $\hat{N}' = \log_q |\hat{r}| - \hat{N}$ and $\hat{r}' = q^{-2\hat{N}'}\hat{r}$. Then:

- $\hat{\boldsymbol{v}}, \boldsymbol{v}$ are unitary,
- \hat{N}', N are selfadjoint with integer spectrum,
- $\hat{v}\hat{N}'\hat{v}^* = \hat{N}' + I$ and $vNv^* = N + I$,

•
$$\hat{r}'\in \mathcal{F}^*$$
, ker $\hat{r}'=\{0\},$

• (\hat{N}', \hat{v}) , (N, v) and \hat{r}' mutually strongly commute.

Theorem

The case ker $\hat{r} = \{0\}$.

We say that the Heisenberg pair is of type II if ker $\hat{r} = \{0\}$. In this case we put v = Phase m, $N = \log_q |m|$, $\hat{v} = uv^{-2}$, $\hat{N}' = \log_q |\hat{r}| - \hat{N}$ and $\hat{r}' = q^{-2\hat{N}'}\hat{r}$. Then:

- $\hat{\boldsymbol{v}}, \boldsymbol{v}$ are unitary,
- \hat{N}', N are selfadjoint with integer spectrum,
- $\hat{v}\hat{N}'\hat{v}^* = \hat{N}' + I$ and $vNv^* = N + I$,

•
$$\hat{r}'\in \mathcal{F}^*$$
, ker $\hat{r}'=\{0\},$

• (\hat{N}', \hat{v}) , (N, v) and \hat{r}' mutually strongly commute.

Theorem

Structure of Heisenberg pair of type II

Simple observation:

If $(\hat{g},g)\in\mathfrak{H}_{\mathcal{H}}$ and $\hat{g}'\in\hat{\mathcal{G}}_{\mathcal{K}}$ then

 $(\hat{g}' \bigoplus \hat{g}, I_{\mathcal{K}} \otimes g) \in \mathfrak{H}_{\mathcal{K} \otimes \mathcal{H}}$

Theorem

If (\hat{g}, g) is a Heisenberg pair of type I and $\hat{g}' = (\hat{N}', \hat{m}') \in \hat{\mathcal{G}}_{\mathcal{K}}$ with ker $\hat{m}' = \{0\}$ then

$(\hat{g}' \bigoplus \hat{g}, I_{\mathcal{K}} \otimes g)$

is a Heisenberg pair of type II. Any Heisenberg pair of type II arises in this way.

Structure of Heisenberg pair of type II

Simple observation:

If $(\hat{g},g) \in \mathfrak{H}_{\mathcal{H}}$ and $\hat{g}' \in \hat{\mathcal{G}}_{\mathcal{K}}$ then $(\hat{g}' \bigoplus \hat{g}, I_{\mathcal{K}} \otimes g) \in \mathfrak{H}_{\mathcal{K} \otimes \mathcal{H}}$

Theorem

If (\hat{g}, g) is a Heisenberg pair of type I and $\hat{g}' = (\hat{N}', \hat{m}') \in \hat{\mathcal{G}}_{\mathcal{K}}$ with ker $\hat{m}' = \{0\}$ then

 $(\hat{g}' \bigoplus \hat{g}, I_{\mathcal{K}} \otimes g)$

is a Heisenberg pair of type II. Any Heisenberg pair of type II arises in this way.

- MU of type I are modular and regular.
- MU of type II are manageable and non-regular.
- MU are labelled by pairs of nonnegative integers (k, l) with k + l ≥ 1.