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E(2) versus simplified E (2)

Double covering:E(2) ∋ (
v , n
0 , v−1

)
7−→

(
u , m
0 , 1

)
∈ E (2),

where u = v 2 and m = vn.

COMMUTATION RELATIONS

v is unitary u is unitary
n is normal mm∗ = q2m∗m

Sp |n| ⊂ qZ ∪ {0} Sp |m| ⊂ qZ ∪ {0}
vnv ∗ = qn umu∗ = q2m
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Quantised complex plane

Let q be the deformation parameter: 0 < q < 1. We setCq
=

{
γ : |γ| ∈ qZ ∪ {0}

}
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Special function

We shall use the following function:Cq
∋ γ 7−→ Fq(γ) ∈ S1

Fq(γ) =





∞∏

k=0

1 + q2kγ

1 + q2kγ
for γ 6= −q−2k ,

− 1 otherwise.

Then Fq is a continuous function: Fq ∈ C(Cq
).
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Commutation relations versus Operator domains

Let CR(r , s, . . . ,w) be commutation relations imposed on N
operators (symbols) r , s, . . . ,w . Then for any Hilbert space H
one may consider the set of all N-tuples of closed operators
satisfying the relations:

DCR
H =

{
(r , s . . . ,w) ∈ CN

H : CR(r , s, . . . ,w)
}

We say that DCR is an operator domain corresponding to the
commutation relations CR . Mathematically operator domains
are concrete topological W ∗-categories.
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Concrete topological W
∗-categories

Objects are N-tuples of operators. Each object r is
anchored to a Hilbert space where the operators act. For
each Hilbert space H the objects anchored to H form a
set DH.

Morphisms are intertwining operators. For any r ∈ DH1

and s ∈ DH2
, Mor(r , s) is a weakly closed linear subspace

of B(H1,H2). Composition of morphisms is the
composition of intertwinners. Moreover

(m ∈ Mor(r , s)) ⇒ (m∗ ∈ Mor(s, r))

D is complete and closed with respect to the natural
topology.
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Completeness

In brief, the concrete W ∗-category D is complete if it is closed
under unitary equivalence, direct sums and passing to a
subobject. More precisely the following statement holds:

Consider any family of objects rλ ∈ DHλ
and any family of

operators mλ ∈ B(H,Hλ) (where H is a Hilbert space and λ

runs over an index set Λ) such that

⋂

λ∈Λ

ker mλ = {0} and mλ′m∗
λ ∈ Mor(rλ, rλ′)

for all λ, λ′ ∈ Λ. Then there exists unique r ∈ DH such that
mλ ∈ Mor(r , rλ) for all λ ∈ Λ.
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Natural topology

Definition (z-transform)

For any closed operator r acting on a Hilbert space H we set

zr = r (I + r ∗r)−1/2
.

We say that a sequence rn ∈ CH of closed operators is
converging to r ∈ CH if

lim
n→∞

‖zrnx − zrx‖ = 0

lim
n→∞

∥∥z∗
rn
x − z∗

r x
∥∥ = 0

for any x ∈ H

With this topology, DCR
H is closed in CN

H for each Hilbert space
H.
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Operator functions

In particular one may consider the empty set of relations impo-
sed on one symbol. The operator domain corresponding to such
relations coincides with the category C of closed operators.

Definition

We say that F is an operator function defined on an operator
domain D if for any Hilbert space H,

DH ∋ r −→ F (r) ∈ CH

is a continuous mapping such that

Mor(r , s) ⊂ Mor(F (r), F (s))

for any r , s ∈ DH.
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Operator functions

In brief

F is an operator function defined on D if F is a continuous
functor from D into C that do not change the anchor Hilbert
space and act trivially on morphisms.

We have: F (uru∗) = uF (r)u∗

F (r ⊕ s) = F (r)⊕ F (s)

In the first formula r ∈ DH, u is an unitary operator acting
form H onto H′ and uru∗ ∈ DH′ is the unique object such
that u ∈ Mor(r , uru∗).
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Important concrete topological W
∗-categories

Category Rep (A,−) of representations of a C ∗-algebra A

Objects anchored to H are representations of the C ∗-algebra A
acting on H. A sequence πn ∈ Rep (A,H) is converging to
π ∈ Rep (A,H) if for each a ∈ A, the sequence πn(a) → π(a)
in strong operator topology.

Category Uni(K ⊗−), where K is a fixed Hilbert space.

Objects anchored to H are unitary operators acting on K⊗H.
The topology on Uni(K ⊗H) is the topology of ∗-strong
convergence.
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Quantum spaces and continuous maps

Quantum
spaces

Topological
W ∗-categories

Operator
mappings

Functors that preserve the
anchor Hilbert space and
act trivially on morphisms
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Operators domains relevant to old quantum E (2).

EH =

{
R ∈ CH :

R−normal

Sp R ⊂ Cq

}
.

E2
H =

{
(R , S) ∈ EH × EH :

SR = q2RS
SR∗ = R∗S

}

Theorem

The closure of the sum is an operator mapping from E2 into E :

E2
H ∋ (R , S) 7−→ R+̇S ∈ EH.

R+̇S = Fq(R
−1S)R Fq(R

−1S)∗.

Fq(R+̇S) = Fq(R)Fq(S).
(1)
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Exponential function equation

Theorem (Old EE Thm)

Let K be a Hilbert space and

EH ∋ R 7−→ F (R) ∈ Uni(K ⊗H)

be an operator mapping. Then the following conditions are
equivalent:

1 F (R+̇S) = F (R)F (S) (2)

for any (R , S) ∈ E2
H.

2 There exists T ∈ EK such that

F (R) = Fq(T
∗ ⊗ R)

for all R ∈ EH.
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Operators domains relevant to simplified E (2).

FH =

{
r ∈ CH :

rr ∗ = q2r ∗r
Sp |r | ⊂ qZ ∪ {0}

}
.

F2
H =

{
(r , s) ∈ FH × FH :

sr = q2rs
sr ∗ = q2r ∗s

}

Then for any Hilbert spaces K and H we have:

FK
∗ ⊗FH ⊂ EK⊗H, F∗

K ⊗ F2
H ⊂ E2

K⊗H,

FK ⊗ EH ⊂ FK⊗H, FK ⊗ E2
H ⊂ F2

K⊗H
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Operator mapping +̇ : F2 −→ F .

Theorem

The closure of the sum is an operator mapping from F2 into F :

F2
H ∋ (r , s) 7−→ r+̇s ∈ FH.

r+̇s = Fq(r
−1s) r Fq(r

−1s)∗.

Proof: If r = 0 then the statement is obvious. Therefore we
may assume that ker r = {0}. Let R = m ⊗ r and S = m ⊗ s,
where m ∈ FK

∗ with ker m = {0}. Then (R , S) ∈ EK⊗H and
we obtain:

m ⊗ r+̇m ⊗ s = Fq(I ⊗ r−1s)(m ⊗ r)Fq(I ⊗ r−1s)∗,

r+̇s = Fq(r
−1s) r Fq(r

−1s)∗.

and the statement follows.
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Exponential function equation

Theorem (New EF Thm)

Let K be a Hilbert space and
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be an operator mapping. Then the following conditions are
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∗ such that

F (r) = Fq(t ⊗ r)
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Proof

Formula (1) shows immediately that condition 2 implies
condition 1. We shall prove the converse. Let K′ be a Hilbert
space and m ∈ FK′ with ker m = {0}. Then m ⊗ R ∈ FK′⊗H

for any R ∈ EH and we may consider the operator mapping

EH ∋ R 7−→ F (m ⊗ R) ∈ Uni(K ⊗K′ ⊗H)

By condition 1, this operator mapping fulfils the exponential
equation (2). Therefore there exists T ∈ EK⊗K′ such that

F (m ⊗ R) = Fq(T ⊗ R)

for all R ∈ EH.
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Proof (continuation)

F (m ⊗ R) = Fq(T ⊗ R) ∈ Uni(K ⊗K′ ⊗H)

for all R ∈ EH. Inserting R = m ⊗ s (where s ∈ FH
∗) we see

that

F (m ⊗ m ⊗ s) = Fq(T ⊗ m ⊗ s) ∈ Uni(K ⊗K′ ⊗K′ ⊗H).

Operator m ⊗ m commutes with the flip ΣK′ . Therefore
T ⊗ m commutes with IK ⊗ ΣK′ . It implies that T = t ⊗ m,
where t is an operator acting on K. One can easily verify that
t ∈ FK

∗. Now our formula takes the form

F (m ⊗ R) = Fq(t ⊗ m ⊗ R)

and Condition 2 of our Theorem follows (with r replaced by
m ⊗ R).
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F (m ⊗ R) = Fq(T ⊗ R) ∈ Uni(K ⊗K′ ⊗H)

for all R ∈ EH. Inserting R = m ⊗ s (where s ∈ FH
∗) we see
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Operator m ⊗ m commutes with the flip ΣK′ . Therefore
T ⊗ m commutes with IK ⊗ ΣK′ . It implies that T = t ⊗ m,
where t is an operator acting on K. One can easily verify that
t ∈ FK

∗. Now our formula takes the form

F (m ⊗ R) = Fq(t ⊗ m ⊗ R)

and Condition 2 of our Theorem follows (with r replaced by
m ⊗ R).
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Quantum E (2)-group.

The domain G introduced below plays the role of quantum
space E (2). For any Hilbert space H we set

GH =
{
(u,m) ∈ Uni(H)× FH : umu∗ = q2m

}

Then G is a closed complete operator domain.
For any g = (u,m) ∈ GH and g ′ = (u′,m′) ∈ GH′ we set

g ©⊥ g ′ = (u ⊗ u′, u ⊗ m′+̇m ⊗ IH′).

Theorem

Let g ∈ GH, g ′ ∈ GH′ and g ′′ =∈ GH′′ . Then

g ©⊥ g ′ ∈ GH⊗H′

(g ©⊥ g ′)©⊥ g ′′ = g ©⊥ (g ′©⊥ g ′′)
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Proof

The only nontrivial statement is:

u ⊗ m′+̇m ⊗ IH′ ∈ FH⊗H′.

To prove it it is enough to notice that

(u ⊗ m′,m ⊗ IH′) ∈ F2
H⊗H′

and use the fact that

+̇ : F2 −→ F .
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Unitary representations

For abelian locally compact groups we are interested in the
space of characters. For non-abelian groups we look for
strongly continuous unitary representations. For quantum
groups the two notions unify.

Definition

Let K be a Hilbert space and

GH ∋ g 7−→ U(g) ∈ Uni(K ⊗H)

be an operator mapping. We say that U is a unitary repre-
sentation of quantum E (2) acting on K if

U(g ©⊥ g ′) = U(g)12U(g ′)13

for any g ∈ GH and g ′ ∈ GH′ .

S.L. Woronowicz Simplified quantum E (2) group.



Unitary representations

For abelian locally compact groups we are interested in the
space of characters. For non-abelian groups we look for
strongly continuous unitary representations. For quantum
groups the two notions unify.

Definition

Let K be a Hilbert space and

GH ∋ g 7−→ U(g) ∈ Uni(K ⊗H)

be an operator mapping. We say that U is a unitary repre-
sentation of quantum E (2) acting on K if

U(g ©⊥ g ′) = U(g)12U(g ′)13

for any g ∈ GH and g ′ ∈ GH′ .

S.L. Woronowicz Simplified quantum E (2) group.



Description of unitary representations

Our aim is to find all unitary representations of quantum E (2).
The are labelled by the operator domain Ĝ. For any Hilbert
space K we set

ĜK =



(N̂, m̂) :

N̂ is a selfadjoint operator
acting on K, Sp N ⊂ Z,

m̂ ∈ FK
∗, N̂m̂ = m̂(N̂ + I )





For any g = (u,m) ∈ GH and ĝ = (N̂ , m̂) ∈ ĜK we consider
the unitary operator

U(ĝ , g) = Fq(m̂ ⊗ m) (IK ⊗ u)N̂⊗IH

acting on K ⊗H. With this notation we have:
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Description of unitary representations

Theorem

Let K be a Hilbert space and ĝ ∈ ĜK. Then

GH ∋ g 7−→ U(ĝ , g) ∈ Uni(K ⊗H)

is a unitary representation of E (2). Any unitary representation
of E (2) is of this form.

Proof: More difficult part of the theorem is the statement
saying that any representation of E (2) is defined by an
element of Ĝ. Let GH ∋ g 7−→ U(g) ∈ Uni(K ⊗H) be an
operator mapping satisfying the character equation:

U(g)12U(g ′)13 = U(g ©⊥ g ′)

for any g ∈ GH and g ′ ∈ GH′ .
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Proof (cont.)

Take H=H′ =C, g = (α, 0) and g ′ = (β, 0), where α,β ∈ S1.
Then g ©⊥ g ′ = (αβ, 0) and the character equation shows that

U(αβ, 0) = U(α, 0)U(β, 0)

Therefore U(α, 0) = αN̂ , where N̂ is a selfadjoint operator
acting on K with integer spectrum.

Take H′ =C, g = (u,m) and g ′ = (α, 0), where α ∈ S1. Then
g ©⊥ g ′ = (αu,m) and the character equation shows that

U(αu,m) = U(u,m)(αN̂ ⊗ IH)
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Proof (cont.)

U(αu,m) = U(u,m)(αN̂ ⊗ IH)

Let Φ(u,m) = U(u,m)(IK ⊗ u)−N̂⊗IH . Then

Φ(αu,m) = Φ(u,m),
Φ(vu,m) = Φ(u,m)

for any v ∈ Uni(H) commuting with u and m. Taking
v = (Phase m)2u∗ we get

Φ(u,m) = Φ((Phase m)2,m) = F (m)

Φ(u,m) does not depend on u. Notice that F (0) = IK

U(u,m) = F (m)(IK ⊗ u)N̂⊗IH
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Proof (cont.)

So far we have shown that

U(u,m) = F (m)(IK ⊗ u)N̂⊗IH,

where F is an operator function on F with values in unitary
operators.

Take H=C, g = (α, 0) and g ′ = (u,m), where α ∈ S1. Then
g ©⊥ g ′ = (αu, αm) and the character equation shows that

(αN̂ ⊗ IH)F (m)(IK ⊗ u)N̂⊗IH = F (αm)(IK ⊗ αu)N̂⊗IH

(αN̂ ⊗ IH)F (m)(α−N̂ ⊗ IH) = F (αm)

(IK⊗u⊗ IH)
N̂⊗IH⊗HF (IH⊗m)(IK⊗u⊗ IH)

−N̂⊗IH⊗H = F (u⊗m)
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Proof (cont.)

(IK⊗u⊗ IH)
N̂⊗IH⊗HF (IH⊗m) = F (u⊗m)(IK⊗u⊗ IH)

N̂⊗IH⊗H

U(u,m) = F (m)(IK ⊗ u)N̂⊗IH

Using the character equation in full generality we have:

F (u ⊗ m+̇m ⊗ IH)(IK ⊗ u ⊗ u)N̂⊗IH⊗H =

F (m⊗ IH)(IK⊗u⊗ IH)
N̂⊗IH⊗H F (IH⊗m)(IK⊗H⊗u)N̂⊗IH⊗H,

F (u ⊗ m+̇m ⊗ IH) = F (m⊗ IH) F (u⊗m).

F (r+̇s) = F (r) F (s),

where (r , s) = (m ⊗ IH, u ⊗ m) is a generic element of F2
H⊗H.
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Proof (cont.)

Using New EF Thm we see that there exists m̂ ∈ FK
∗ such

that
F (m) = Fq(m̂ ⊗ m)

for all m ∈ FH.

U(u,m) = Fq(m̂ ⊗ m)(IK ⊗ u)N̂⊗IH = U(N̂, m̂; u,m)

To end the proof we use the established earlier formula:

(αN̂ ⊗ IH)F (m)(α−N̂ ⊗ IH) = F (αm).

Therefore
αN̂m̂α−N̂ = αm̂

and N̂m̂ = m̂(N̂ + IK). It shows that (N̂, m̂) ∈ ĜK
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Group structure on Ĝ.

Let ĝ ∈ ĜK and ĝ ′ ∈ ĜK′ . Then

GH ∋ g 7−→ U(ĝ ′, g)23U(ĝ , g)13 ∈ Uni(K ⊗K′ ⊗H)

is a unitary representation of E (2) acting on K ⊗K′. By our
theorem this representation is related to an element of ĜK⊗K′ .
This element is denoted by ĝ ©⊥ ĝ ′. So we have

U(ĝ ©⊥ ĝ ′, g) = U(ĝ ′, g)23U(ĝ , g)13.

If ĝ = (N̂, m̂) and ĝ ′ = (N̂ ′, m̂′) then the simple computation
shows that

ĝ ©⊥ ĝ = (N ⊗ IK′+̇IK ⊗ N̂ ′, m̂ ⊗ q2N̂′

+̇IK ⊗ m̂′)
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GH ∋ g 7−→ U(ĝ ′, g)23U(ĝ , g)13 ∈ Uni(K ⊗K′ ⊗H)

is a unitary representation of E (2) acting on K ⊗K′. By our
theorem this representation is related to an element of ĜK⊗K′ .
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U(ĝ ©⊥ ĝ ′, g) = U(ĝ ′, g)23U(ĝ , g)13.

If ĝ = (N̂, m̂) and ĝ ′ = (N̂ ′, m̂′) then the simple computation
shows that

ĝ ©⊥ ĝ = (N ⊗ IK′+̇IK ⊗ N̂ ′, m̂ ⊗ q2N̂′

+̇IK ⊗ m̂′)
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Multiplicative Unitaries

Let H be a Hilbert space and W be a unitary operator acting
on H⊗H. W is called a multiplicative unitary if

W23W12 = W12W13W23

W ∗

W

W

=
W

W
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Modular multiplicative unitaries

A unitary W ∈ Uni(H⊗H) is a modular multiplicative
unitary if

W is multiplicative (W23W12 = W12W13W23)

there exist positive, selfadjoint Q and Q̂ on H such that

W
(
Q̂ ⊗ Q

)
W ∗ = Q̂ ⊗ Q

we have

(x ⊗ y W z ⊗ u) =
(
z ⊗ Qy W̃ x ⊗ Q−1u

)

for a certain unitary W̃ ∈ Uni(H̄ ⊗ H).

W is manageable if Q̂ = Q.
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From multiplicative unitaries to quantum groups

Take modular m.u. W ∈ Uni(H⊗H)

Let A = {ω ⊗ id)(W ) : ω ∈ B(H)∗}
norm closure ⊂ B(H)

A is a C ∗-algebra.

For a ∈ A we have W (a ⊗ IH)W
∗ ∈ M(A ⊗ A) and

A ∋ a 7−→ W (a ⊗ IH)W
∗

defines a comultiplication ∆ ∈ Mor(A,A ⊗ A).
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Quantum group from W

We have (∆⊗ id)o∆ = (id ⊗∆)o∆

We have
{
∆(a)(I ⊗ b) : a, b ∈ A

}CLS

= A ⊗ A,
{
(a ⊗ I )∆(b) : a, b ∈ A

}CLS

= A ⊗ A.

There is a closed antimultiplicative map

κ : (ω ⊗ id)(W ) 7−→ (ω ⊗ id)(W ∗)

Moreover κ = Roτ i

2
where R is an antiautomorphism of A

and (τt)t∈R is a one parameter group of automorphisms
of A: τt(a) = Q2itaQ−2it
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Heisenberg commutation relations

Let ĝ ∈ ĜH and g ∈ GH (the same Hilbert space!). We say
that (ĝ , g) is a Heisenberg pair if

U(ĝ , g ′)(g ⊗ IK)U(ĝ , g ′)∗ = g ©⊥ g ′

for any g ′ ∈ GK. For any Hilbert space H we set

HH =

{
(ĝ , g) ∈ ĜH × GH :

(ĝ , g) is a

Heisenberg pair

}

Then H is a closed complete operator domain.
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Heisenberg relations and multiplicative unitaries

Theorem

Let H be a Hilbert space and (ĝ , g) ∈ HH. Then

W = U(ĝ , g)

is a multiplicative unitary acting on H⊗H related to the
quantum E (2)-group. Any multiplicative unitary related to the
quantum E (2)-group is of this form.

S.L. Woronowicz Simplified quantum E (2) group.



Heisenberg relations and multiplicative unitaries

Theorem

Let H be a Hilbert space and (ĝ , g) ∈ HH. Then
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Heisenberg relations revealed

Theorem

Let N̂, m̂, u,m be closed operators acting on a Hilbert space H.
Then (N̂, m̂, u,m) ∈ HH if and only if the following conditions
are satisfied:

(u,m) ∈ GH, ker m = {0},

u∗N̂u = N̂ + IH

N̂ and m strongly commute.

m̂ = m−1u+̇r̂ , where r̂ is a closed operator such that:

(N̂, r̂) ∈ ĜH,

u∗ r̂ u = q2r̂ ,

r̂ and m strongly commute.
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The case r̂ = 0.

We say that the Heisenberg pair is of type I if r̂ = 0.

In this case we put v = Phase m, N = logq |m| and v̂ = uv−2.
Then

v̂ , v are unitary,

N̂ ,N are selfadjoint with integer spectrum,

v̂ N̂ v̂ ∗ = N̂ + I and vNv ∗ = N + I ,

(N̂ , v̂) strongly commutes with (N, v ).

(N̂, v̂ ) and (N, v ) are Heisenberg pair for the abelian group S1.
Hence quadruple (N̂, v̂ ,N, v ) is UNIQUE.

Theorem

The Heisenberg pair of type I is unique (up to the unitary
equivalence and multiplicity).
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The case ker r̂ = {0}.

We say that the Heisenberg pair is of type II if ker r̂ = {0}.

In this case we put v = Phase m, N = logq |m|, v̂ = uv−2,

N̂ ′ = logq |r̂ | − N̂ and r̂ ′ = q−2N̂′

r̂ . Then:

v̂ , v are unitary,

N̂ ′,N are selfadjoint with integer spectrum,

v̂ N̂ ′v̂ ∗ = N̂ ′ + I and vNv ∗ = N + I ,

r̂ ′ ∈ F∗, ker r̂ ′ = {0},

(N̂ ′, v̂), (N, v ) and r̂ ′ mutually strongly commute.

Theorem

The Heisenberg pair of type II is unique (up to the unitary
equivalence and multiplicity).
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Structure of Heisenberg pair of type II

Simple observation:

If (ĝ , g) ∈ HH and ĝ ′ ∈ ĜK then

(ĝ ′©⊥ ĝ , IK ⊗ g) ∈ HK⊗H

Theorem

If (ĝ , g) is a Heisenberg pair of type I and ĝ ′ = (N̂ ′, m̂′) ∈ ĜK

with ker m̂′ = {0} then

(ĝ ′©⊥ ĝ , IK ⊗ g)

is a Heisenberg pair of type II. Any Heisenberg pair of type II
arises in this way.
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Multiplicative Unitaries

MU of type I are modular and regular.

MU of type II are manageable and non-regular.

MU are labelled by pairs of nonnegative integers (k, l)
with k + l ≥ 1.
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