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Introduction

CCR and ACR

Canonical commutation relations (CCR):

`∗i `j − `j`∗i = δij Bosons

Canonical anti-commutation relations (ACR):

`∗i `j + `j`
∗
i = δij Fermions

Interpolation: the q-commutation relations

`∗i `j − q`j`
∗
i = δij for − 1 ≤ q ≤ 1.
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q-Fock Space

[Bożejko & Speicher]
For H a Hilbert space:

F(H ) := CΩ⊕
∞⊕
n=1

H ⊗n (algebraically)

For q ∈ (−1, 1), an inner product on F(H ):

(f1⊕. . .⊕fj , g1⊕. . .⊕gk)q := δj,k
∑
π∈Sk

q# inversions in π(f1, gπ,1) . . . (fk , gπ,k)

Then, Fq(H ) := completion of F(H ).
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q-commuting “random variables”

For f ∈H , creation operator `q(f ) on Fq(H ):

`q(f ) f1 ⊗ . . .⊗ fk = f ⊗ f1 ⊗ . . .⊗ fk .

Adjoint = anihilation operator `∗q(f ).

Facts: for q ∈ (−1, 1),

1. `q(f ), `∗q(f ) are bounded.

2. B(Fq(H )) = von Neumann algebra generated by {`q(h) | h ∈H }.

“q-deformed probability”:

  

q = 1q = -1 q = 0

Classical 
(commuting)

Anti-
commuting

Free
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q-Semicircular and q-Circular

q-semicircular (q-Gaussian) sq q-circular (q-complex Gaussian) cq

[Bożejko & Speicher 1991] [Mingo & Nica 2001, Kemp 2005]

sq = `1 + `∗1 cq =
`1 + `∗1 + i(`2 + `∗2)√

2

ϕ(s2nq ) =
∑

π∈P(2n)

qcr(π) ϕ((cqc∗q )n) =
∑

π∈P(◦∗)n
qcr(π)
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||sq|| = 2√
1−q ||cq|| =?
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lim
n→∞

||sq||2n = ||sq|| =
2√

1− q

lim
n→∞

||cq||2n = ||cq|| =?
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Main Results

Norms of the q-Semicircular

Theorem
Let γ1, γ2, . . . be the sequence of 2n-norms of the q-semicircular
operator and consider the sequence of complex-valued functions
γ̃1, γ̃2, . . . defined on the unit ball BC := {z ∈ C, |z | < 1} as

γ̃n(q) =
1√

1− q

(
n∑

k=−n
(−1)kqk(k−1)/2

(
2n

n + k

)) 1
2n

.

Then, for n large enough, γ̃n analytically extend γn on BC.
Moreover,

γ̃n(q)→ 2√
1− q

, q ∈ BC

and the convergence is uniform on compact subsets of BC.
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Main Results

Norms of the q-Circular
Least-magnitude roots of the 2n-norms of cq for n ≤ 12.
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Main Results

Norms of the q-Circular

Theorem
Let λ1, λ2, . . . be the sequence of 2n-norms of the q-circular
operator. Then, there exists no complex neighborhood of the origin
on which λn have analytic continuations that converge uniformly
on compact sets.

11
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Diagrams

Combinatorics of sq

ϕ(s2nq ) =
∑

π∈P(2n)

qcr(π)

where
P(2n) = pair partitions of [2n],

cr(π) = |{{a1, b1}, {a2, b2} ∈ π | a1 < a2 < b1 < b2}|.
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Diagrams

A few moments:
ϕ(s2q) = 1

ϕ(s4q) = 2 + q

ϕ(s6q) = 5 + 6q + 3q2 + q3

. . .

Let tn,k = # pairings on [2n] with k crossings.

ϕ(s2nq ) =
∑

π∈P(2n)

qcr(π) =
∑

k=0,1,...

tn,kqk

tn,0 =
1

n + 1

(
2n

n

)
, tn,1 =

3

2n + 1

(
2n + 1

n − 1

)
, tn,k = 0 for k >

(
n

2

)
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Diagrams

Theorem (Touchard1952,Riordan1975)

For n ∈ N,

∑
π∈P(2n)

qcr(π) =
1

(1− q)n

n∑
k=−n

(−1)kqk(k−1)/2
(

2n

n + k

)
.

=⇒ moments of sq, convergence of norms, etc.
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Diagrams

Combinatorics of cq

ϕ((cqc∗q)n) =
∑

π∈P(◦∗)n
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Diagrams

Combinatorics of cq

Let rn,k = |{π ∈ P(◦∗)n with k crossings}|.

ϕ((cqc∗q)n) =
∑

π∈P(◦∗)n
qcr(π) =

(n2)∑
k=0

rn,kqk

rn,0 =
1

n + 1

(
2n

n

)
, rn,k = 0 for k >

(
n

2

)
, rn,1 = rn,2 = 0

  

* *
*

*
*

***
*

*
odd

even

even

odd
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Diagrams

Combinatorics of cq

rn,3 =

(
2n

n − 3

)
.

rn,4 = 2

(
2n

n − 4

)
.

rn,5 = 2

(
2n

n − 5

)
.

rn,6 = 2

(
2n

n − 6

)
+ 5

(
2n

n − 5

)
+

n + 6

2!

(
2n

n − 6

)
.
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Norms of cq

Back to the original question

λn = ϕ((cqc∗q)n)
1
2n =

 (n2)∑
k=0

rn,kqk


1
2n

0 0.2 0.4 0.6 0.8 1

0.5
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Least root of λn  for n = 3,...,12
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Norms of cq

Back to the original question

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

Re

Im

Least root of λn  for n = 3,...,12

D

Assume to the contrary that λn are analytic on D 3 0 and
converge uniformly on its compact subsets.

=⇒ lim
n→∞

(
dm

dqm
λn(q)

) ∣∣∣
q=0

=
dm

dqm
λ(q)

∣∣∣
q=0

.

(Secretly hoping derivative →∞ for some m.)
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Norms of cq

Note:

dm

dqm
λn(q)

∣∣∣
q=0

=
∑

`1,`2,...,`m∈{0,1,...,m}
`1+2`2+...+m`m=m

1
2n !

( 1
2n − (`1 + . . .+ `m))!

1

`1! . . . `m!

×
(

rn,1
rn,0

)`1
. . .

(
rn,m
rn,0

)`m
(rn,0)

1
2n

Key 1: need rn,k only for k ≤ m.
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Norms of cq

Diagram decomposition along NCeven(2n)

Observation: ∃ a unique decomposition

pairing on (◦∗)n ←→ π = {V1, . . . ,Vm} ∈ NCeven(2n)
+ choice of connected pairing for each Vi

  

* *
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*
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* *
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Norms of cq

Let bn,k = # connected pairings on (◦∗)n with k crossings.

Then,

rn,k =
∑

`=1,...,k
β={(n1,k1),...,(n`,k`)}

n1+...+n`=n
k1+...+k`=k
ni ,ki∈Z+

(2n)!

Φ1(β)!Φ2(β)! . . .Φn(β)!(2n + 1− l)!
bn1,k1 . . . bn`,k` ,

where Φi (β) counts the number of pairs β with the first coordinate

equaling i , i.e. Φi (β) =
∣∣∣{(ñ, k̃) ∈ β | ñ = i}

∣∣∣.
But, bn,k = 0 if n > k.

Key 2: can derive rn,k from b`,t for t, ` ≤ k.
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n=1 2 3 4 5 6 7 8 9 10 11
k=0 1 0 0 0 0 0 0 0 0 0 0
k=3 0 0 1 0 0 0 0 0 0 0 0

4 0 0 0 2 0 0 0 0 0 0 0
5 0 0 0 0 2 0 0 0 0 0 0
6 0 0 0 0 5 2 0 0 0 0 0
7 0 0 0 0 5 24 2 0 0 0 0
8 0 0 0 0 0 18 56 2 0 0 0
9 0 0 0 0 0 4 70 176 2 0 0

10 0 0 0 0 1 12 98 328 576 2 0
11 0 0 0 0 0 12 105 408 1107 300 2

Table: bn,k for 0 ≤ n, k ≤ 11

=⇒ rn,k = . . . for k ≤ 11.

=⇒ limn→∞

(
dm

dqmλn(q)
) ∣∣∣

q=0
∈ R for k < 11.

limn→∞

(
d11

dq11
λn(q)

) ∣∣∣
q=0

= −∞.
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A better way to do this. . .

dm

dqm
λn(q)

∣∣∣
q=0

=
∑

`1,`2,...,`m∈{0,1,...,m}
`1+2`2+...+m`m=m

1
2n !

( 1
2n − (`1 + . . .+ `m))!

1

`1! . . . `m!

×
(

rn,1
rn,0

)`1
. . .

(
rn,m
rn,0

)`m
(rn,0)

1
2n

rn,k =
∑

`=1,...,k
β={(n1,k1),...,(n`,k`)}

n1+...+n`=n
k1+...+k`=k
ni ,ki∈Z+

(2n)!

Φ1(β)!Φ2(β)! . . .Φn(β)!(2n + 1− l)!
bn1,k1 . . . bn`,k`
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Norms of cq

=⇒ dk

dqk
λn(q)

∣∣∣
q=0

= (rn,0)
1
2n

∑
`=1,...,k

β={(n1,k1),...,(n`,k`)}
n1+n2+...+n`≤n
k1+k2+...+k`=k

ni ,ki≥3

bn1,k1 . . . bn`,k`Υ(β)

Fact 1: Generally, Υ(β) ∼ cβ n`−1.

Fact 2: If β = {(n1, k1), . . . , (n`, k`)} and ni = nj ⇐⇒ ki = kj ,
then Υ(β) = Θ(1).
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Norms of cq

Why 11?

For k = 9,
β1 = {(3, 3), (3, 3), (3, 3)}, β2 = {(4, 4), (5, 5)},

β3 = {(3, 3), (6, 6)}, β4 = {(3, 3), (5, 6)}.

For k = 10, . . .

For k = 11,
β1 = {(3, 3), (3, 3), (5, 5)}, β2 = {(3, 3), (4, 4), (4, 4)},

β3 = {(3, 3), (6, 8)}, β4 = {(3, 3), (7, 8)}, β5 = {(3, 3), (8, 8)},
β6 = {(4, 4), (5, 7)}, β7 = {(4, 4), (6, 7)}, β8 = {(4, 4), (7, 7)},

β9 = {(5, 5), (6, 6)}, β10 = {(5, 5), (5, 6)}.
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Norms of cq

n = 5, k = 6

  

*
1

** **
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Going Beyond

Crossings are cool
Directed Crossings of Corteel (Adv. Appl. Math. 38 (2007))

  

1 1

2

2

3
34

4

5

5 *
*

*
*

*
1 1

2

2

3
34

4

5

5 *
*

*
*

*

1. q-commutation relation in the PASEP matrix ansatz:
DE − qED = D + E .
(Corteel & Williams, Adv. Appl. Math. 39 (2007))

2. Specialization of staircase tableaux of Corteel & Williams ↔
moments of Askey-Wilson OPS and stationary distribution of
the ASEP. (Corteel & Williams, PNAS, March, 2010).
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Thanks. . .

DANKE SCHÖN
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