Chords, Norms, and q-Commutation Relations

Natasha Blitvic MIT

ESI April 19, 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Chords, Norms, and *q*-Commutation Relations \Box Introduction

CCR and ACR

Canonical commutation relations (CCR):

$$\ell_i^* \ell_j - \ell_j \ell_i^* = \delta_{ij}$$
 Bosons

Canonical anti-commutation relations (ACR):

$$\ell_i^* \ell_j + \ell_j \ell_i^* = \delta_{ij}$$
 Fermions

Interpolation: the q-commutation relations

$$\ell_i^*\ell_j - q\ell_j\ell_i^* = \delta_{ij} \quad ext{for} \quad -1 \leq q \leq 1.$$

Chords, Norms, and *q*-Commutation Relations \Box Introduction

q-Fock Space

[Bożejko & Speicher] For \mathscr{H} a Hilbert space:

$$\mathcal{F}(\mathscr{H}) := \mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} \mathscr{H}^{\otimes n}$$
 (algebraically)

For $q \in (-1,1)$, an inner product on $\mathcal{F}(\mathscr{H})$:

$$(f_1\oplus\ldots\oplus f_j,g_1\oplus\ldots\oplus g_k)_q:=\delta_{j,k}\sum_{\pi\in S_k}q^{\# \text{ inversions in }\pi}(f_1,g_{\pi,1})\ldots(f_k,g_{\pi,k})$$

Then, $\mathcal{F}_q(\mathscr{H}) := \text{completion of } \mathcal{F}(\mathscr{H}).$

q-commuting "random variables"

For $f \in \mathscr{H}$, creation operator $\ell_q(f)$ on $\mathcal{F}_q(\mathscr{H})$:

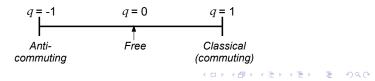
$$\ell_q(f) f_1 \otimes \ldots \otimes f_k = f \otimes f_1 \otimes \ldots \otimes f_k.$$

Adjoint = anihilation operator $\ell_q^*(f)$.

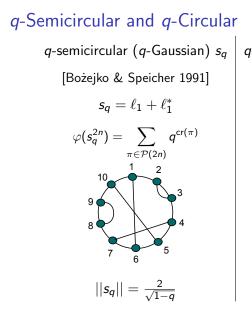
Facts: for $q \in (-1, 1)$,

- 1. $\ell_q(f), \ell_q^*(f)$ are bounded.
- 2. $\mathcal{B}(\mathcal{F}_q(\mathscr{H})) = \text{von Neumann algebra generated by } \{\ell_q(h) \mid h \in \mathscr{H}\}.$

"q-deformed probability":



Chords, Norms, and *q*-Commutation Relations \Box Introduction



q-circular (q-complex Gaussian) c_q [Mingo & Nica 2001, Kemp 2005] $c_q = \frac{\ell_1 + \ell_1^* + i(\ell_2 + \ell_2^*)}{\sqrt{2}}$ $\varphi((c_q c_q^*)^n) = \sum q^{\operatorname{cr}(\pi)}$ $\pi \in \mathcal{P}(\circ *)^n$ 5 3 $||c_{a}|| = ?$

◆□▶ ◆圖▶ ◆言▶ ◆言▶ ○言 ●のへの

Chords, Norms, and *q*-Commutation Relations \Box Introduction

$$\lim_{n \to \infty} ||s_q||_{2n} = ||s_q|| = \frac{2}{\sqrt{1-q}}$$

$$\lim_{n\to\infty} ||c_q||_{2n} = ||c_q|| = ?$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Norms of the q-Semicircular

Theorem

Let $\gamma_1, \gamma_2, \ldots$ be the sequence of 2*n*-norms of the *q*-semicircular operator and consider the sequence of complex-valued functions $\tilde{\gamma}_1, \tilde{\gamma}_2, \ldots$ defined on the unit ball $\mathcal{B}_{\mathbb{C}} := \{z \in \mathbb{C}, |z| < 1\}$ as

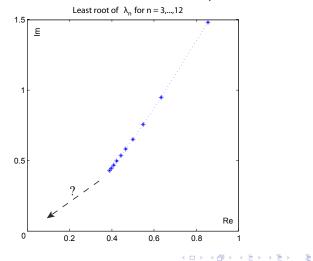
$$ilde{\gamma}_n(q) = rac{1}{\sqrt{1-q}} \left(\sum_{k=-n}^n (-1)^k q^{k(k-1)/2} \binom{2n}{n+k} \right)^{rac{1}{2n}}$$

Then, for n large enough, $\tilde{\gamma}_n$ analytically extend γ_n on $B_{\mathbb{C}}$. Moreover,

$$ilde{\gamma}_n(q) o rac{2}{\sqrt{1-q}}, \quad q \in B_{\mathbb{C}}$$

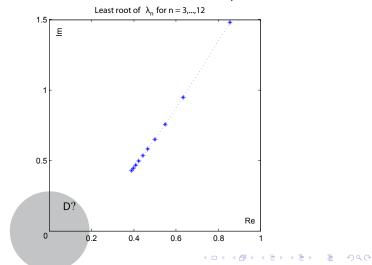
and the convergence is uniform on compact subsets of $B_{\mathbb{C}}$.

Least-magnitude roots of the 2*n*-norms of c_q for $n \leq 12$.



Sar

Least-magnitude roots of the 2*n*-norms of c_q for $n \leq 12$.



Theorem

Let $\lambda_1, \lambda_2, \ldots$ be the sequence of 2n-norms of the q-circular operator. Then, there exists no complex neighborhood of the origin on which λ_n have analytic continuations that converge uniformly on compact sets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

Let $\lambda_1, \lambda_2, \ldots$ be the sequence of 2*n*-norms of the q-circular operator. Then, there exists no complex neighborhood of the origin on which λ_n have analytic continuations that converge uniformly on compact sets.

11

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Combinatorics of s_q

$$\varphi(s_q^{2n}) = \sum_{\pi \in \mathcal{P}(2n)} q^{\operatorname{cr}(\pi)}$$

where

$$P(2n) = \text{pair partitions of } [2n],$$

$$cr(\pi) = |\{\{a_1, b_1\}, \{a_2, b_2\} \in \pi \mid a_1 < a_2 < b_1 < b_2\}|.$$

Chords, Norms, and *q*-Commutation Relations

A few moments:

$$arphi(s_q^2) = 1$$
 $arphi(s_q^4) = 2 + q$
 $arphi(s_q^6) = 5 + 6q + 3q^2 + q^3$

. . .

(ロ)、

A few moments:

$$arphi(s_q^2) = 1$$

 $arphi(s_q^4) = 2 + q$
 $arphi(s_q^6) = 5 + 6q + 3q^2 + q^3$

. . .

Let $t_{n,k} = \#$ pairings on [2n] with k crossings.

$$\varphi(s_q^{2n}) = \sum_{\pi \in \mathcal{P}(2n)} q^{\operatorname{cr}(\pi)} = \sum_{k=0,1,\dots} t_{n,k} q^k$$

$$t_{n,0} = \frac{1}{n+1} \binom{2n}{n}, \quad t_{n,1} = \frac{3}{2n+1} \binom{2n+1}{n-1}, \quad t_{n,k} = 0 \text{ for } k > \binom{n}{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (Touchard1952, Riordan1975) For $n \in \mathbb{N}$,

$$\sum_{\pi \in \mathcal{P}(2n)} q^{cr(\pi)} = \frac{1}{(1-q)^n} \sum_{k=-n}^n (-1)^k q^{k(k-1)/2} \binom{2n}{n+k}.$$

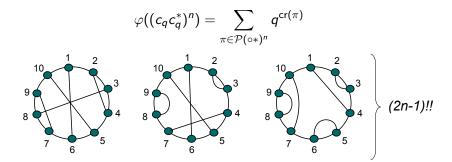
Theorem (Touchard1952, Riordan1975) For $n \in \mathbb{N}$,

$$\sum_{\pi \in \mathcal{P}(2n)} q^{cr(\pi)} = \frac{1}{(1-q)^n} \sum_{k=-n}^n (-1)^k q^{k(k-1)/2} \binom{2n}{n+k}.$$

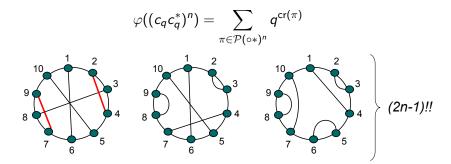
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \implies moments of s_q , convergence of norms, etc.

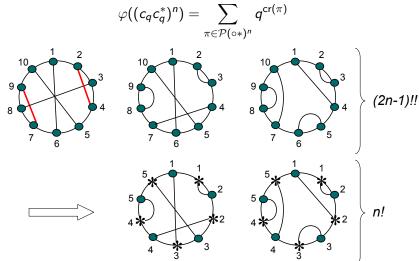
Combinatorics of c_q



Combinatorics of c_q



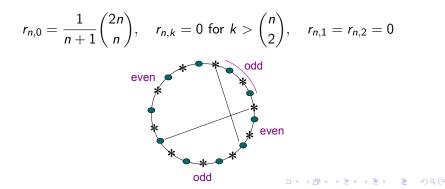
Combinatorics of c_q



190

Combinatorics of c_q Let $r_{n,k} = |\{\pi \in \mathcal{P}(\circ *)^n \text{ with } k \text{ crossings}\}|.$

$$\varphi((c_q c_q^*)^n) = \sum_{\pi \in \mathcal{P}(\circ*)^n} q^{\operatorname{cr}(\pi)} = \sum_{k=0}^{\binom{n}{2}} r_{n,k} q^k$$



Combinatorics of c_q

$$r_{n,3}=\binom{2n}{n-3}.$$

Combinatorics of c_q

$$r_{n,3} = \binom{2n}{n-3}.$$
$$r_{n,4} = 2\binom{2n}{n-4}.$$

Combinatorics of c_q

$$r_{n,3} = \binom{2n}{n-3}.$$
$$r_{n,4} = 2\binom{2n}{n-4}.$$
$$r_{n,5} = 2\binom{2n}{n-5}.$$

Combinatorics of c_q

$$r_{n,3} = \binom{2n}{n-3}.$$

$$r_{n,4} = 2\binom{2n}{n-4}.$$

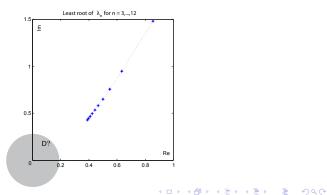
$$r_{n,5} = 2\binom{2n}{n-5}.$$

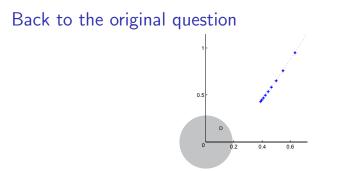
$$r_{n,6} = 2\binom{2n}{n-6} + 5\binom{2n}{n-5} + \frac{n+6}{2!}\binom{2n}{n-6}.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Back to the original question

$$\lambda_{n} = \varphi((c_{q}c_{q}^{*})^{n})^{\frac{1}{2n}} = \left(\sum_{k=0}^{\binom{n}{2}} r_{n,k}q^{k}\right)^{\frac{1}{2n}}$$





Assume to the contrary that λ_n are analytic on $D \ni 0$ and converge uniformly on its compact subsets.

$$\implies \lim_{n \to \infty} \left(\frac{d^m}{dq^m} \lambda_n(q) \right) \Big|_{q=0} = \frac{d^m}{dq^m} \lambda(q) \Big|_{q=0}$$

ж

(Secretly hoping derivative $\rightarrow \infty$ for some *m*.)

Note:

$$\frac{d^{m}}{dq^{m}}\lambda_{n}(q)\Big|_{q=0} = \sum_{\substack{\ell_{1},\ell_{2},\ldots,\ell_{m}\in\{0,1,\ldots,m\}\\\ell_{1}+2\ell_{2}+\ldots+m\ell_{m}=m}} \frac{\frac{1}{2n}!}{(\frac{1}{2n}-(\ell_{1}+\ldots+\ell_{m}))!}\frac{1}{\ell_{1}!\ldots\ell_{m}!} \times \left(\frac{r_{n,1}}{r_{n,0}}\right)^{\ell_{1}}\ldots\left(\frac{r_{n,m}}{r_{n,0}}\right)^{\ell_{m}}(r_{n,0})^{\frac{1}{2n}}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Key 1: need $r_{n,k}$ only for $k \leq m$.

Diagram decomposition along $NC_{even}(2n)$

Observation: \exists a unique decomposition

pairing on $(\circ*)^n \iff \pi = \{V_1, \dots, V_m\} \in NC_{even}(2n)$ + choice of connected pairing for each V_i

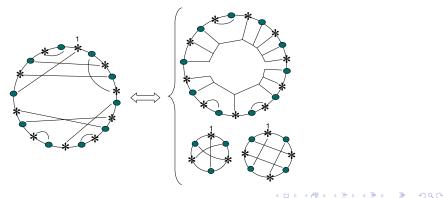
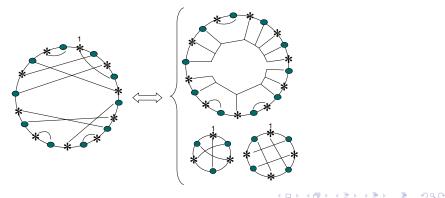


Diagram decomposition along $NC_{even}(2n)$

Observation: \exists a unique decomposition

pairing on $(\circ*)^n \iff \pi = \{V_1, \dots, V_m\} \in NC_{even}(2n)$ + choice of connected pairing for each V_i



Let $b_{n,k} = \#$ connected pairings on $(\circ *)^n$ with k crossings.

Let $b_{n,k} = \#$ connected pairings on $(\circ *)^n$ with k crossings. Then,

$$r_{n,k} = \sum_{\substack{\ell=1,\dots,k\\\beta = \{(n_1,k_1),\dots,(n_\ell,k_\ell)\}\\n_1+\dots+n_\ell=n\\k_1+\dots+k_\ell=k\\n_r,k_i \in Z_+}} \frac{(2n)!}{\Phi_1(\beta)!\Phi_2(\beta)!\dots\Phi_n(\beta)!(2n+1-l)!} b_{n_1,k_1}\dots b_{n_\ell,k_\ell},$$

where $\Phi_i(\beta)$ counts the number of pairs β with the first coordinate equaling *i*, i.e. $\Phi_i(\beta) = \left| \{ (\tilde{n}, \tilde{k}) \in \beta \mid \tilde{n} = i \} \right|$.

Let $b_{n,k} = \#$ connected pairings on $(\circ *)^n$ with k crossings. Then,

$$r_{n,k} = \sum_{\substack{\ell=1,\dots,k\\\beta = \{(n_1,k_1),\dots,(n_\ell,k_\ell)\}\\n_1+\dots+n_\ell=n\\k_1+\dots+k_\ell=k\\n_r,k_i \in Z_+}} \frac{(2n)!}{\Phi_1(\beta)!\Phi_2(\beta)!\dots\Phi_n(\beta)!(2n+1-l)!} b_{n_1,k_1}\dots b_{n_\ell,k_\ell},$$

where $\Phi_i(\beta)$ counts the number of pairs β with the first coordinate equaling *i*, i.e. $\Phi_i(\beta) = \left| \{ (\tilde{n}, \tilde{k}) \in \beta \mid \tilde{n} = i \} \right|$.

But, $b_{n,k} = 0$ if n > k.

Let $b_{n,k} = \#$ connected pairings on $(\circ *)^n$ with k crossings. Then,

$$r_{n,k} = \sum_{\substack{\ell=1,\dots,k\\\beta = \{(n_1,k_1),\dots,(n_\ell,k_\ell)\}\\n_1+\dots+n_\ell=n\\k_1+\dots+k_\ell=k\\n_r,k_i \in Z_+}} \frac{(2n)!}{\Phi_1(\beta)!\Phi_2(\beta)!\dots\Phi_n(\beta)!(2n+1-l)!} b_{n_1,k_1}\dots b_{n_\ell,k_\ell},$$

where $\Phi_i(\beta)$ counts the number of pairs β with the first coordinate equaling *i*, i.e. $\Phi_i(\beta) = \left| \{ (\tilde{n}, \tilde{k}) \in \beta \mid \tilde{n} = i \} \right|$.

But, $b_{n,k} = 0$ if n > k.

Key 2: can derive $r_{n,k}$ from $b_{\ell,t}$ for $t, \ell \leq k$.

	n=1	2	3	4	5	6	7	8	9	10	11
k=0	1	0	0	0	0	0	0	0	0	0	0
k=3	0	0	1	0	0	0	0	0	0	0	0
4	0	0	0	2	0	0	0	0	0	0	0
5	0	0	0	0	2	0	0	0	0	0	0
6	0	0	0	0	5	2	0	0	0	0	0
7	0	0	0	0	5	24	2	0	0	0	0
8	0	0	0	0	0	18	56	2	0	0	0
9	0	0	0	0	0	4	70	176	2	0	0
10	0	0	0	0	1	12	98	328	576	2	0
11	0	0	0	0	0	12	105	408	1107	300	2

Table: $b_{n,k}$ for $0 \le n, k \le 11$

 $\implies r_{n,k} = \dots$ for $k \leq 11$.

	n=1	2	3	4	5	6	7	8	9	10	11
k=0	1	0	0	0	0	0	0	0	0	0	0
k=3	0	0	1	0	0	0	0	0	0	0	0
4	0	0	0	2	0	0	0	0	0	0	0
5	0	0	0	0	2	0	0	0	0	0	0
6	0	0	0	0	5	2	0	0	0	0	0
7	0	0	0	0	5	24	2	0	0	0	0
8	0	0	0	0	0	18	56	2	0	0	0
9	0	0	0	0	0	4	70	176	2	0	0
10	0	0	0	0	1	12	98	328	576	2	0
11	0	0	0	0	0	12	105	408	1107	300	2

Table: $b_{n,k}$ for $0 \le n, k \le 11$

 $\implies r_{n,k} = \dots \text{ for } k \leq 11.$ $\implies \lim_{n \to \infty} \left(\frac{d^m}{dq^m} \lambda_n(q) \right) \Big|_{q=0} \in \mathbb{R} \text{ for } k < 11.$ $\lim_{n \to \infty} \left(\frac{d^{11}}{dq^{11}} \lambda_n(q) \right) \Big|_{q=0} = -\infty.$

	n=1	2	3	4	5	6	7	8	9	10	11
k=0	1	0	0	0	0	0	0	0	0	0	0
k=3	0	0	1	0	0	0	0	0	0	0	0
4	0	0	0	2	0	0	0	0	0	0	0
5	0	0	0	0	2	0	0	0	0	0	0
6	0	0	0	0	5	2	0	0	0	0	0
7	0	0	0	0	5	24	2	0	0	0	0
8	0	0	0	0	0	18	56	2	0	0	0
9	0	0	0	0	0	4	70	176	2	0	0
10	0	0	0	0	1	12	98	328	576	2	0
11	0	0	0	0	0	12	105	408	1107	300	2

Table: $b_{n,k}$ for $0 \le n, k \le 11$

$$\implies r_{n,k} = \dots \text{ for } k \leq 11.$$

$$\implies \lim_{n \to \infty} \left(\frac{d^m}{dq^m} \lambda_n(q) \right) \Big|_{q=0} \in \mathbb{R} \text{ for } k < 11.$$

$$\lim_{n \to \infty} \left(\frac{d^{11}}{dq^{11}} \lambda_n(q) \right) \Big|_{q=0} = -\infty.$$

A better way to do this...

$$\begin{aligned} \frac{d^{m}}{dq^{m}}\lambda_{n}(q)\Big|_{q=0} &= \sum_{\substack{\ell_{1},\ell_{2},\ldots,\ell_{m}\in\{0,1,\ldots,m\}\\\ell_{1}+2\ell_{2}+\ldots+m\ell_{m}=m}} \frac{\frac{1}{2n}!}{(\frac{1}{2n}-(\ell_{1}+\ldots+\ell_{m}))!}\frac{1}{\ell_{1}!\ldots\ell_{m}!} \\ &\times \left(\frac{r_{n,1}}{r_{n,0}}\right)^{\ell_{1}}\ldots\left(\frac{r_{n,m}}{r_{n,0}}\right)^{\ell_{m}}(r_{n,0})^{\frac{1}{2n}} \\ r_{n,k} &= \sum_{\substack{\ell=1,\ldots,k\\\beta=\{(n_{1},k_{1}),\ldots,(n_{\ell},k_{\ell})\}\\n_{1}+\ldots+n_{\ell}=n\\k_{1}+\ldots+k_{\ell}=k\\n_{i},k_{i}\in\mathbb{Z}_{+}}} \frac{(2n)!}{\Phi_{1}(\beta)!\Phi_{2}(\beta)!\ldots\Phi_{n}(\beta)!(2n+1-\ell)!}b_{n_{1},k_{1}}\ldots b_{n_{\ell},k_{\ell}} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Chords, Norms, and $q\text{-}\mathsf{Commutation}$ Relations \sqcup_{Norms} of c_q

$$\implies \frac{d^{k}}{dq^{k}}\lambda_{n}(q)\Big|_{q=0} = (r_{n,0})^{\frac{1}{2n}} \sum_{\substack{\ell=1,\dots,k\\\beta = \{(n_{1},k_{1}),\dots,(n_{\ell},k_{\ell})\}\\n_{1}+n_{2}+\dots+n_{\ell} \leq n\\k_{1}+k_{2}+\dots+n_{\ell} = k\\n_{i},k_{i} \geq 3}} b_{n_{1},k_{1}}\dots b_{n_{\ell},k_{\ell}}\Upsilon(\beta)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\implies \left. \frac{d^{k}}{dq^{k}} \lambda_{n}(q) \right|_{q=0} = (r_{n,0})^{\frac{1}{2n}} \sum_{\substack{\ell=1,\dots,k \\ \beta = \{(n_{1},k_{1}),\dots,(n_{\ell},k_{\ell})\} \\ n_{1}+n_{2}+\dots+n_{\ell} \le n \\ k_{1}+k_{2}+\dots+k_{\ell}=k \\ n_{i},k_{i} \ge 3}} b_{n_{1},k_{1}}\dots b_{n_{\ell},k_{\ell}} \Upsilon(\beta)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Fact 1: Generally, $\Upsilon(\beta) \sim c_{\beta} n^{\ell-1}$.

$$\implies \frac{d^{k}}{dq^{k}}\lambda_{n}(q)\Big|_{q=0} = (r_{n,0})^{\frac{1}{2n}} \sum_{\substack{\ell=1,\dots,k\\\beta = \{(n_{1},k_{1}),\dots,(n_{\ell},k_{\ell})\}\\n_{1}+n_{2}+\dots+n_{\ell} \le n\\k_{1}+k_{2}+\dots+k_{\ell}=k\\n_{i},k_{i} \ge 3}} b_{n_{1},k_{1}}\dots b_{n_{\ell},k_{\ell}}\Upsilon(\beta)$$

Fact 1: Generally, $\Upsilon(\beta) \sim c_{\beta} n^{\ell-1}$.

Fact 2: If $\beta = \{(n_1, k_1), \dots, (n_\ell, k_\ell)\}$ and $n_i = n_j \iff k_i = k_j$, then $\Upsilon(\beta) = \Theta(1)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

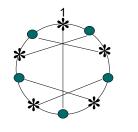
Why 11?

For
$$k = 9$$
,
 $\beta_1 = \{(3,3), (3,3), (3,3)\}, \beta_2 = \{(4,4), (5,5)\}, \beta_3 = \{(3,3), (6,6)\}, \beta_4 = \{(3,3), (5,6)\}.$
For $k = 10, ...$
For $k = 11$,
 $\beta_1 = \{(3,3), (3,3), (5,5)\}, \beta_2 = \{(3,3), (4,4), (4,4)\}, \beta_3 = \{(3,3), (6,8)\}, \beta_4 = \{(3,3), (7,8)\}, \beta_5 = \{(3,3), (8,8)\}, \beta_6 = \{(4,4), (5,7)\}, \beta_7 = \{(4,4), (6,7)\}, \beta_8 = \{(4,4), (7,7)\}, \beta_9 = \{(5,5), (6,6)\}, \beta_{10} = \{(5,5), (5,6)\}.$

Why 11?

For
$$k = 9$$
,
 $\beta_1 = \{(3,3), (3,3), (3,3)\}, \beta_2 = \{(4,4), (5,5)\}, \beta_3 = \{(3,3), (6,6)\}, \beta_4 = \{(3,3), (5,6)\}.$
For $k = 10, ...$
For $k = 11$,
 $\beta_1 = \{(3,3), (3,3), (5,5)\}, \beta_2 = \{(3,3), (4,4), (4,4)\}, \beta_3 = \{(3,3), (6,8)\}, \beta_4 = \{(3,3), (7,8)\}, \beta_5 = \{(3,3), (8,8)\}, \beta_6 = \{(4,4), (5,7)\}, \beta_7 = \{(4,4), (6,7)\}, \beta_8 = \{(4,4), (7,7)\}, \beta_9 = \{(5,5), (6,6)\}, \beta_{10} = \{(5,5), (5,6)\}.$

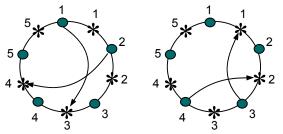
n = 5, k = 6



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Crossings are cool

Directed Crossings of Corteel (Adv. Appl. Math. 38 (2007))



1. *q*-commutation relation in the PASEP matrix ansatz: DE - qED = D + E.

(Corteel & Williams, Adv. Appl. Math. 39 (2007))

 Specialization of *staircase tableaux* of Corteel & Williams ↔ moments of Askey-Wilson OPS and stationary distribution of the ASEP. (Corteel & Williams, PNAS, March, 2010). Chords, Norms, and *q*-Commutation Relations \Box Thanks...

DANKE SCHÖN