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Shlyakhtenko, Xu

ESI April 2011

Marius Junge Brownian motion



Martingales with continuous time and Brownian
motion

Marius Junge

University of Illinois at Urbana-Champaign

joint in parts with Avsec, Collins, Köstler, Perrin, Ricard,
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Naive approach to brownian motion?

According to Lévy’s characterization the classical brownian (bt)
motion is characterized by the following properties:

i) (bt) is a martingale with respect to a filtration Σt ;

ii) (b2
t − t) is a martingale with respect to Σt ;

iii) (bt) has almost everywhere continuous path.

Naive approach: Take Lévy’s characterization as a definition!
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Noncommutative modifications:

X A filtration is given by an increasing family (Nt)t ≥ 0 of
conditioned von Neumann subalgebras of a given von
Neumann algebra N .

X For today, we will assume that N is finite, i.e. admits a
normal faithful tracial state τ with τ(1) = 1, and Nt are von
Neumann subalgebras corresponding to L∞(Ω,Σt) in the
classical setting. Then the existence of τ -preserving
conditional expectations Et : N → Nt is guaranteed.

X Let N∞ = ∩p<∞Lp(N) the algebra of elements with finite
moments of all order (‖x‖p = [τ(|x |p)]1/p);

X We shall also consider selfadjoint martingales, i.e. bt ∈ N∞t
such that Et(bs) = bt for s ≤ t.
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Continuous Path:

X A family (process) (xt)t ≥ 0 has almost uniformly continuous
path if for every ε > 0 and T > 0 there exists a projection
e = e∗ = e2 with τ(1− e) < ε such that t 7→ xte defines a
continuous function in C ([0,T ]; N).

X For many purposes we can work with a weaker vanishing
variation condition: Let (xt) ⊂ N∞. There exists a p > 2
such that for every T > 0

lim
σ

∑
t∈σ
‖xt+ − xt‖pp = 0 .

Working definition: An abstract brownian motion is given by a
selfadjoint martingale with almost uniformly continuous path such
that (b2

t − t) is again a martingale.
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A priori estimates

Examples: Classical, and all q-gaussians, in particular semicircular
brownian motion (Bozejko, Kümmerer, Speicher, Biane, Maassen,
Guta).

The following a priori estimates hold for abstract brwonian motion:

1) τ(|bt − bs |4) ≤ 3|t − s|2; Hence vanishing variation for all
p > 2.

2) The operator ϕt(x) = limh→0
1
hEt((bt+h − bt)x(bt+h − bt)) is

completely positive unital and trace preserving.

3) The moments are given by

τ(bk
t ) =

∑
1≤j<l≤k

∫ t

0
τ(bj−1

s ϕs(bk−j−1
s ))ds .

More generally, one has a formula for joint moments.
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Proof of 1)

We may use a baby version of the Ito formula thanks to the
assumption on continuous path. Then we have to consider

(4
2

)
= 6

subsets of cardinality 2:

τ((bt − bs)(bt − bs)(bt − bs)(bt − bs))

=

∫ t

s
τ(dbrdbr (br − bs)2) +

∫ t

s
τ(dbr (br − bs)dbr (br − bs))

+

∫ t

s
τ(dbr (br − bs)2dbr ) +

∫ t

s
τ((br − bs)db2

r (br − bs))

+

∫ t

s
τ((br − bs)dbr (br − bs)dbr ) +

∫ t

s
τ((br − bs)2dbrdbr )

= 4

∫ t

s
τ((br − bs)2)dr + 2

∫ r

s
τ(dbr (br − bs)dbr (br − bs))

≤ 6

∫ t

s
(r − s)dr = 3(t − s)2 .
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Convexity

Remark: All values for τ(|b1|4) between 1 and 3 are possible.

Indeed, this follows from the following result:

Theorem (Collins +J.) Let C ∗(bt) the ∗-algebra of selfadjoint
operators and τ a trace satisfying

0) τ(1) = 1;

i) τ(btq(bs1 , ..., bsm) = τ(bsq(bs1 , ..., bsm)) if max{si} ≤ s ≤ t;

ii) τ((b2
t − t)q(bs1 , ..., bsm) = τ((b2

s − s)q(bs1 , ..., bsm)) if
max{si} ≤ s ≤ t;

iv) τ(|bt − bs |4) ≤ 3|t − s|2;

v) τ(q(x)∗q(x)) ≥ 0.

Then one can construct an abstract brownian motion in a finite
von Neumann algebra.
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Bistochastic integral version of Doobs formula

Let (mt) ⊂ N∞ be a selfadjoint martingale such that

i) mt has uniformly continuous path;

ii) τ(m2
t −m2

s ) ≤ C (t − s);

We may define the increasing process [m,m]t by

[m,m]t = lim
σ

∑
t+∈σ

|mt+ −mt−|2 .

The existence of the limit as a weak limit along finite partitions is
not entirely trivial.
Theorem: There exists an abstract brownian motion (bt) and an
adapted process a(s) such that

mt = m0 +

∫ t

0
a(s)∗dbsa(s) .
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Applications to semigroups

Let (Tt) be a semigroup of completely positive unital, selfadjoint
maps on a von Neumann algebra with generator Tt = e−tA

such
that for all x ∈ dom(A1/2) the gradient form

2Γ(x , x) = A(x∗)x + x∗A(x)− A(x∗x) ∈ L1(N) .

Then there exists a larger von Neumann algebra M and a family of
automorphism αs such that

i) EN(αs(x)) = Ts(x) (Markov dilation);

ii) αs(x) = x +
∫ s
0 αr (Ax)dr + ms(x);

iii) For x ∈ dom(A1/2) ∩ dom(A) we have
ms(x) =

∫ s
0 a(r)∗dbr (x)a(r);

iv) br = br (x) is a twisted free brownian motion, i.e.

τ(bk
t ) =

∑
1≤j<l≤k

∫ t

0
τ(bj−1

r αr (EN(αr−1(bl−j
r ))bk−j+1

r )dr .
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Remarks

X In the setting of brownian motions on compact manifolds the
map αr corresponds to choosing a measurable frame for the
tangent space.

X In our argument (Shlyakhtenko+Ricard+J.) this twisted
brownian motion is important in characterizing semigroups
with sufficiently many smooth function.

X Under similar assumptions Dabrowski constructs the solution
αs inductively.

X These dilation results generalize the work of Kümmerer and
Maassen in the matrix algebra situation.
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Tools to distinguish brownian motion: Then notion of
copies

Let M ⊂ A. We say that πj : A→ N are copies over M if all
the πj are trace preserving ∗-homomorphism and
πj |M = πk |M .
Example A = M ⊗ N and N = M ⊗⊗n∈NN. Then we may
use πj(m ⊗ n) = m ⊗ 1⊗ · · · ⊗ n ⊗ · · · , where n appears on
the j-th position.
M ⊂ A and N = ∗MA is the infinite free product, πj the
∗-homomorphism given by the j-coordinate.
We say that copies Aj = πj(A) are subsymmetric (spreadable)
if

τ(πj1(a1) · · ·πjk (ak)) = τ(πl1(a1) · · ·πlk (ak))

holds whenever (j1, ..., jk) and (l1, ..., lk) have the same order
structure, i.e.

ja < jb ⇔ la < lb .
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Symmetry and subsymmetry

We say that copies Aj = πj(A) are symmetric (exchangeable)
if

τ(πj1(a1) · · ·πjk (ak)) = τ(πjσ(1)
(a1) · · ·πjσ(n)

(ak))

holds for every permutation σ.

Example: Let G be a group and α : G → Aut(G ) the group
representation given by αg (h) = ghg−1. Then one can define
a group law on G∞ =

⋃
n Gn such that the maps

πj(g) = (1, ...., g , 1, ..., ) give examples of subsymmetric, in
general not symmetric copies.

Remark: By a famous Theorem of Aldous subsymmetric tight
random variables are automatically symmetric.
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Construction of subsymmetric copies:

Let α : G → Aut(H) be a group homomorphism. Then the new
product on H oα G is defined as

(h, g)(h′, g ′) = (hαg (h′), gg ′) .

We fix the automorphism α : G → Aut(G ), given by the inner
automorphism αg (h) = ghg−1. We define G (1) = G , G 2 = G o G
and show by induction that

(g1, ..., gn)(h1, ..., hn) = (g1 · · · gnh1g
−1
n · · · g−1

2 , g2 · · · gnh1g
−1
n · · · g−1

3 ,

, · · · , gn−1gnhng
−1
n , gnhn)

defines a group multiplication on Gn. Let G∞ =
⋃

n Gn. Then the
coordinate homomorphism πj : G → G∞, πj(g) = (1, · · · , g , ...)
sending to the j-th position, are subsymmetric (in the category of
groups). Let G = S3, x = (12) + (23). Then the expression
f (a, b) = ‖aπ1(x) + bπ2(x)‖6 is not symmetric in a, b.
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See Köstler’s talk form more info on braid group and symmetry in
particular

symmetric⇒ braidable⇒ subsymmetric

⇒ stationary and full tail indepedent

Here stationary means that

τ(πj1+k(a1) · · ·πjm+k(am)) = τ(πj1(a1) · · ·πjm(am)) .
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Central Limit Theorem

Let πj : A→ N be subsymmetric copies, and εnj be uniformly
bounded and subsymmetric. Let

un(x) = n−1/2
∑n

j=1 εj(n)⊗ πj(x) .

Let OP2 be the set of ordered pair partitions. Then

lim
n
τ(un(x1) · · · un(xm)) =

1

(m/2)!

∑
o∈OP2

τo [x1, ..., xm]τo [ε1, ..., εm]

For example for o = ({1, 5}, {2, 4}, {3, 6})

τo(x1, x2, x3, x4, x5, x6) = τ(π1(x1)π2(x2)π3(x3)π2(x4)π1(x5)π3(x6))

but for o = ({2, 4}, {3, 6}, {1, 5})

τo(x1, x2, x3, x4, x5, x6) = τ(π3(x1)π1(x2)π2(x3)π1(x4)π3(x5)π2(x6))

For symmetric πj , (εj) it suffices to consider pair partitions.
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Speicher’s construction

Observation: Let ε(i , j) be a symmetric matrix with entries
in ±1. Then there exists Clifford type matrices εi ∈ M2n such
that

ε2i = 1 εiεj = ε(i , j)εjεi .

Speicher chooses Prob(ε(i , j) = 1) = 1−q
2 independently.

Then

lim
n
τ(un(f1) · · · un(fm)) =

∑
σ∈P2

qinversions(σ)
∏
{k,l}∈σ

τ(fk fl)

gives a matrix model for the q-gaussian random variables.
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From independence to brownian motion

M ⊂ A,B ⊂ N are independent over M if

EM(ab) = EM(a)EM(b) .

A sequence of copies Aj = π(Aj) are called successively
independent over M if Nj = vNa(A1, ...,Aj) is independent
from Aj+1 over M.

Let Aj = πj(A) be subsymmetric copies, successively
independent copies over C and εj subsymmetric. Let x ∈ A
with τ(x) = 0 and τ(x2) = 1. Then the limit object

bt = (
√

t/n

[tn]∑
j=1

εj ⊗ πj(x))•

is an abstract brownian motion.
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New brownian motion

In the Central Limit Model we can use the filtration given by
((N[tn])

•). The continuous path condition follows from the
moment formula (only sum of pair partitions).

Theorem: There exists an abstract brownian motions with
non-symmetric, independent increments: Indeed, we can find
a group and a mean 0 element x such that the brownian
motions constructed from the central limit theorem satisfies

τ(g3
1 g2g1g2) 6= τ(g3

2 g1g2g1) .

for g1 = B2 − B1 and g2 = (B3 − B2).
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Second quantization from combinatorial aspect

Let H be a real Hilbert space. We say that
{s(h) : h ∈ H} ⊂ N∞ is a obtained from combinatorial second
quantization if there exists a function f on pair partitions such
that

τN(s(h1) · · · s(hm)) =
∑

σ∈P2(m)

f (σ)
∏
{k,l}∈σ

(hk , hl) .

Here P2(m) are the pair partitions.

Examples f (σ) = qinversions(σ), but many more examples
through the work Maassen and Guta.

For H = L2(0,∞) we may call bt = s(1[0,t]) a combinatorial
brownian motion.
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through the work Maassen and Guta.

For H = L2(0,∞) we may call bt = s(1[0,t]) a combinatorial
brownian motion.
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Symmetric brownian motion and partition function

Let (bt) be a brownian motion. We define the increments
b[s,t] = bt − bs .

We say that (bt) is a symmetric brownian motion if for every
n ∈ N the sequence (b[k−1/n,k/n])k is a sequence of symmetric
copies.

Prop.: (J.+D.) Let (bt) be a symmetric brownian motion.
For a partition γ and n ∈ N let (Ij)

m
j=1 a sequence following γ,

i.e. Ij = Ik iff {j , k} is contained in an element of γ, and
|Ij | = 1

n . Then

ϕ(γ) = lim
n,U

n|γ|τ(bI1 · · · bIm)

exists. Moreover, for every γ, and |Il | = t we have

τ(bI1 · · · bIm) = tm/2
∑

σ≤γ,σ∈P2(m)

ϕ(γ) .
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From symmetric brownian motions to second quantization

Let (bt) be a symmetric brownian motion.

As a particular case of the moment formula we have Bozejko’s
formula

τ(bm
t ) = tm/2

∑
γ∈P2(m)

ϕ(γ) .

A symmetric brownian motion admits second quantization, i.e.
a function s : H → Γb(H) such that

τ(s(h1) · · · s(hm)) =
∑

γ∈P2(m)

ϕ(γ)
∏

(k,l)∈γ

(hk , hl)

for real Hilbert spaces H.

Moreover (J.+A.) Γb(L2(0,∞)) coincides with the von
Neumann algebra generated by bt ’s.

Marius Junge Brownian motion



From symmetric brownian motions to second quantization

Let (bt) be a symmetric brownian motion.

As a particular case of the moment formula we have Bozejko’s
formula

τ(bm
t ) = tm/2

∑
γ∈P2(m)

ϕ(γ) .

A symmetric brownian motion admits second quantization, i.e.
a function s : H → Γb(H) such that

τ(s(h1) · · · s(hm)) =
∑

γ∈P2(m)

ϕ(γ)
∏

(k,l)∈γ

(hk , hl)

for real Hilbert spaces H.

Moreover (J.+A.) Γb(L2(0,∞)) coincides with the von
Neumann algebra generated by bt ’s.

Marius Junge Brownian motion



From symmetric brownian motions to second quantization

Let (bt) be a symmetric brownian motion.

As a particular case of the moment formula we have Bozejko’s
formula

τ(bm
t ) = tm/2

∑
γ∈P2(m)

ϕ(γ) .

A symmetric brownian motion admits second quantization, i.e.
a function s : H → Γb(H) such that

τ(s(h1) · · · s(hm)) =
∑

γ∈P2(m)

ϕ(γ)
∏

(k,l)∈γ

(hk , hl)

for real Hilbert spaces H.

Moreover (J.+A.) Γb(L2(0,∞)) coincides with the von
Neumann algebra generated by bt ’s.

Marius Junge Brownian motion



From symmetric brownian motions to second quantization

Let (bt) be a symmetric brownian motion.

As a particular case of the moment formula we have Bozejko’s
formula

τ(bm
t ) = tm/2

∑
γ∈P2(m)

ϕ(γ) .

A symmetric brownian motion admits second quantization, i.e.
a function s : H → Γb(H) such that

τ(s(h1) · · · s(hm)) =
∑

γ∈P2(m)

ϕ(γ)
∏

(k,l)∈γ

(hk , hl)

for real Hilbert spaces H.

Moreover (J.+A.) Γb(L2(0,∞)) coincides with the von
Neumann algebra generated by bt ’s.

Marius Junge Brownian motion



Characterization of symmetric brownian motion

(Avsec+J.) There is a one to one correspondance between

a) Selfadjoint symmetric brownian motion on a II1 probability
space.

b) A positive definite function ϕ on S∞ such that
ϕ(i−1

n σin) = ϕ(σ) for all

σ =

(
1 2 · · · n − 1n

nn − 1 · · · 2 1

)
Moreover, symmetric brownian motions admit a Fock space
construction.

These results are related but not based on the results of Guta
and Maassen on generalized Fock space constructions by
species.
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Summary

- The ‘set’ of abstract Brownian motions is convex;

- There exists symmetric brownian motions whose increments
are no longer independent (simple application of convexity);

- There exists non-symmetric, stationary brownian motions
(operator-valued version of Speicher’s central limit thm);

- There exists non-stationary bronwian motions with
independent increments;

- Symmetric brownian motion admit second quantization and a
Fock space construction.

Thanks for listening
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