On Free Product von Neumann Algebras

Yoshimichi UEDA

Kyushu University

Apr. 2011

$$\begin{array}{ll} (M_1,\varphi_1) \\ (M_2,\varphi_2) \end{array} \quad \leadsto \quad (M,\varphi) = (M_1,\varphi_1) \star (M_2,\varphi_2) \end{array}$$

- The construction is fundamental in free probability theory, because it enables us to construct any number of freely independent random variables.
- The construction is also important in theory of von Neumann algebras, since it is one typical way to construct a new von Neumann algebra from known (given) ones.

Review on von Neumann Algebras 1/3

- $\mathcal{Z}(M) := \{x \in M \mid, \forall y \in M, xy = yx\} \cong L^{\infty}(\Omega, \nu)$ center
- $M = \int_{\Omega}^{\oplus} M_{\omega} v(d\omega)$ central decomposition
- Call *M* a factor if $\mathcal{Z}(M) = \mathbb{C}$.
- (Murray–von Neumann, 30's) The factors are classified into the classes:
 - type $I_n (\cong M_n(\mathbb{C}))$,
 - type $I_{\infty} \cong B(\mathfrak{H})$,
 - type II₁ (∃ faithful normal tracial state),
 - type $II_{\infty} \cong (type II_1) \otimes B(\mathfrak{H})),$
 - type III (otherwise)

Review on von Neumann Algebras 2/3

- $(M, \varphi) \rightsquigarrow \sigma_t^{\varphi} \in \operatorname{Aut}(M)$ modular automorphism group
- Connes in '73 further classified, by looking at σ_t^{φ} "modulo Int(M)", the type III into the following subclasses:
 - type III₀
 - type III_{λ} (0 < λ < 1)
 - type III₁
- $T(M) = \{t \in \mathbb{R} \mid \sigma_t^{\varphi} \in \text{Int}(M)\} \text{T-set}$
- T-set IS NOT ENOUGH to determine III_λ-type in general; but
 - $T(M) = \{\frac{2\pi n}{-\log \lambda} \mid n \in \mathbb{Z}\}$ if *M* is a factor of type III_{λ} ,
 - $T(M) = \{0\}$ if M is a factor of type III₁.

Let's take a free ultrafilter $\omega \in \beta(\mathbb{N}) \setminus \mathbb{N}$, a kind of 'extra-ordinary' natural numbers'

- M^{ω} ultraproduct (a kind of "compactification" of M)
- $M_{\omega} \subset M' \cap M^{\omega} = \{x \in M^{\omega} \mid \forall y \in M, xy = yx\}$ - asymptotic centralizer / a kind of "ideal boundary" (Remark: $M_{\omega} \neq M' \cap M^{\omega}$ in general; e.g. M = hyperfinite III_{λ} factor.)
- Connes' observation: When M is a factor,

 $\operatorname{Int}(M)$ is closed if and only if $M_{\omega} = \mathbb{C}$

• NB: hyperfiniteness or amenablity implies $M_{\omega} \neq \mathbb{C}$.

Fundamental Questions on $(M, \varphi) = (M_1, \varphi_1) \star (M_2, \varphi_2)$

- Determine the center and the central decomposition (factoriality question).
- Determine the Murray–von Neumann–Connes type (type classification question).
- Determine $M_{\omega} \subset M' \cap M^{\omega}$ (fullness question).
- Calculate further algebraic invariants Sd- and τ- invariants, etc.
- Clarify the dependency of 'algebraic type' of *M* on the choice of φ₁, φ₂.

- Barnett factoriality, type classification, fullness
- Dykema factoriality, type classification, Sd-invariant
- U factoriality, type classification, (fullness, implicitly)

• —

- Radulescu analysis on a special free product
- Shlyakhtenko free Araki–Woods factors, *τ*-invariant
- Vaes τ-invariant

Main Theorems 1/2

Theorem [U, arXiv:1011.5017]

Any free product $(M, \varphi) = (M_1, \varphi_1) \star (M_2, \varphi_2)$ with $\dim(M_i) \ge 2$ (i = 1, 2), $\dim(M_1) + \dim(M_2) \ge 5$ is of the form $M = M_d \oplus M_c$, where:

- M_d is a multimatrix algebra possibly with $M_d = 0$,
- M_c is a factor of type II₁ or III_{λ} with $\lambda \neq 0$ with

$$T(M_c) = \{t \in \mathbb{R} \mid \sigma_t^{\varphi_1} = \mathrm{Id} = \sigma_t^{\varphi_2}\},\$$

• and moreover $M_{c\,\omega} = M'_c \cap M^{\omega}_c = \mathbb{C}$.

Remarks:

- The multimatrix part M_d can be described explicitly.
- $(M_c)_{\varphi}$ (= the centralizer of $\varphi|_{M_c}$) can be small in general !
- Neither type I_{∞} , II_{∞} nor III_0 occurs !

Yoshimichi UEDA (Kyushu University)

Main Theorems 2/2

Theorem [U, arXiv:1101.4991]

Let $(M, \varphi) = (M_1, \varphi_1) \star (M_2, \varphi_2)$ be a free product with $\dim(M_i) \ge 2$ (i = 1, 2), $\dim(M_1) + \dim(M_2) \ge 5$.

- If both φ_1, φ_2 are almost periodic, then so is φ , the Sd-invariant $\operatorname{Sd}(M_c)$ is the subgroup of \mathbb{R}^{\times}_+ algebraically generated by those λ such that $\sigma_t^{\varphi_i}(x) = \lambda^{it} x$ for some non-zero $x \in M_i$ with i = 1, 2, and moreover $((M_c)_{\varphi})' \cap M_c^{\omega} = \mathbb{C}$.
- The τ -invariant $\tau(M_c)$ is the weakest topology on \mathbb{R} making both $t \in \mathbb{R} \mapsto \sigma_{t}^{\varphi_i} \in \operatorname{Aut}(M_i), i = 1, 2$, continuous.

Corollaries

Let $(M, \varphi) = (M_1, \varphi_1) \star (M_2, \varphi_2)$ with $\dim(M_i) \ge 2$ (i = 1, 2).

• *M* is amenable if and only if $\dim(M_1) = \dim(M_2) = 2$. Moreover, when $\dim(M_1) + \dim(M_2) \ge 5$ we have:

- The diffuse factor part M_c is always prime. (Chifan–Houdayer)
- If M (or M_c) has CMAP, then any non-amenable subalgebra of the diffuse factor part M_c has no Cartan. (Houdayer–Ricard)
- The diffuse factor part M_c has an almost periodic state if and only if both φ_1, φ_2 are almost periodic.

Lemma

If A is a diffuse von Neumann subalgebra of $(M_1)_{\psi}$ for some ψ (which may be different from the given φ_1) and if $x \in M$ satisfies $xAx^* \subseteq M_1$, then x must be in M_1 .

Corollary

Any diffuse (semi-regular or singular) MASA A in M_1 which is the range of a faithful normal conditional expectation becomes again a (resp. semi-regular or singular) MASA in M.

Proposition 1

If either M_1 or M_2 is diffuse, then M is a factor of type II_1 or III_{λ} with $\lambda \neq 0$ and $T(M) = \{t \in \mathbb{R} \mid \sigma_t^{\varphi_1} = Id = \sigma_t^{\varphi_2}\}.$

Lemma

If there exist ψ on M_1 (which may be different from φ_1) and $u, v \in ((M_1)_{\psi})^u$ such that $\varphi_1(u^n) = \delta_{n0} = \psi(v^n)$, then

$$||y(x - E^{\omega}(x))||_{(\psi \circ E_1^{\omega})} \le ||[x, y]||_{(\psi \circ E_1^{\omega})}$$

for any $x \in \{u, v\}' \cap M^{\omega}$ and any $y \in \text{Ker}(\varphi_2)$.

Proposition 2

If either M_1 or M_2 is diffuse, then $M' \cap M^{\omega} = \mathbb{C}$.

Next Problems

Identify *M_c* with a free Araki–Woods factor when both *M₁*, *M₂* are amenable.

(A partial positive solution is known due to Houdayer.)

 Prove that *M_c* has no Cartan without any assumption. (This is true when *M* (or *M_c*) has CMAP due to Houdayer–Ricard.)

Thank you for your attention !