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Random Vandermonde Matrices

Let V, be the n x m random matrix of the form

1 o 1
1 e27ri91 o e27ri9,,,
Vo= —
vn : : :
e2mi(n=1)61 = @2mi(n—1)0m

where the {01,...,0n} are random variables in [0, 1].



Random Vandermonde Matrices

Let V, be the n x m random matrix of the form

1 o 1
1 e27ri91 o e27ri9,,,
Vo= —
" : . :
e2mi(n=1)61 = @2mi(n—1)0m
where the {01,...,0n} are random variables in [0, 1].

We are interested in the limit eigenvalue distribution of the random matrix V'V, under the
conditions that:

o The phases are i.i.d. in the interval [0, 1] with probability distribution v

e limp—oo % =c€ (0,00)



d-fold Random Vandermonde Matrices

More generally, we will be studying the random matrices vn(d) ford >1
Let £ = (f1,...,£4) € {0,1,...,n—1}9 and consider the function
d .
f(£) = Z W~ a bijection to {0,1,...,n% — 1}
j=1

Consider xi, ..., xm random vectors in [0,1]? independent and identically distributed.

We know define the matrix 4

()0 = n=% exp(27i (¢, xq))

(
Vi

We are interested in the limit eigenvalue distribution of the random matrix (V,Sd))*(V,Sd)) under

o d
the condition limp— oo "; =c€ (0,00)



Why do we care?

o Let m wireless sensors measure the value of a spatially finite physical field (air temperature,
pressure, etc) defined over a d dimensional compact space

o One can think of sensor nodes randomly deployed over the geographical region
o We want to reconstruct the field from a collection of samples that are noisy

e Measure reconstruction accuracy by the MSE



Why do we care?

o Let m wireless sensors measure the value of a spatially finite physical field (air temperature,
pressure, etc) defined over a d dimensional compact space

o One can think of sensor nodes randomly deployed over the geographical region
o We want to reconstruct the field from a collection of samples that are noisy

e Measure reconstruction accuracy by the MSE

The sensors X = {x1,x2,...,xm} € [0, 1]d. By truncating the field's Fourier series expansion:
s(x)~n"2 Zal 28

where n is the approximate one-sided bandwidth (per dimension) of the field £ = (41, ...,44).



Multidimensional Signal Processing and Sensor Networks cont'd

We can write the vector s as a function of the field spectrum:

_1
s=0niV"a

d

where V is the n? x m d-fold Vandermonde matrix with sensors iid and Bn,m = ”;



Multidimensional Signal Processing and Sensor Networks cont'd

We can write the vector s as a function of the field spectrum:

_1
s=0niV"a

d

where V is the n? x m d-fold Vandermonde matrix with sensors iid and Bn,m = ”;

Let
p = (s(x1) + n1,s(x2) + m2, ..., s(xm) + nm)

be the sensor measurements.

Using the Sherman-Morrison-Woodbury identity, we can obtain the MSE as

MSE(™ = snr=18, 1 - E(tr{(V,Sd))(V,Sd))* + Snrflﬁ,,,m})

(d)

The bottom line is that we need to understand the spectrum of (V, )*(V,Sd)) when n and m are

big



Some natural polytopes

Let k > 2 and consider a partition p € P(k)
p= {Bly---7B|p\}

with |p| blocks.
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Some natural polytopes

Let k > 2 and consider a partition p € P(k)

p:{Bly---7B|p\}

with |p| blocks.
For each i € {1,2,..., k} consider a variable 0 < x; < 1 and for each block j consider the
equation
£ Y xa=Yx
i€B; i€B;

The solution set has k + 1 — |p| free variables. We define

K, = volume of the solution set in [0, 1]kt1=lel



Example

Consider k = 4 and the following two partitions :

@ Number of free variables is 2

Ei :xi+x3s=x2+x4 & Ey:xo=x1 & E3:x4=x3

then x; = x» and x3 = x4 therefore
K,=1

@ The second partition is p = {{1,3},{2,4}}, the number of free variables is 3 and
Ei=E:x1+x3=x2+xa
then 5
Ko =vol ({6, ,00) € [0,1 - 0Sx+a —xe 1)) =



Moments' formulas

Theorem (Ryan and Debbah)

Assume that v has a continuous density p. Then the asymptotic p-th moment of V'V,

i — m@wE[trm(v: vn)k)] = 3 Kpuclelt
pEP (k)

exists when & — c € (0, 00) where

1
Ko = - [ o)l de

and |p| is the number of blocks of p.
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Moments' formulas

Theorem (Ryan and Debbah)

Assume that v has a continuous density p. Then the asymptotic p-th moment of V'V,

my = mILmQQ]E[tr,,,(V,T vn)k)] = 3 Kpuclelt
pEP (k)

exists when = — ¢ € (0, c0) where

1
Koo =Ky [ 017 dx
0

and |p| is the number of blocks of p.

@ For every partition p we have 0 < K, < 1 and corresponds to the uniform distribution
o K, is a rational number for every p € P(k)

o K, =1 if and only if p is non—crossing



Formula to compute K,

Proposition (T., Whiting)

For each partition p € P(k) with
p=1{B1,-.-, By}

let p:{1,2,...,k} — {1,2,...,|p|} given by p(i) =j ifi is in block j. Then

KPZ/ Gp(tl,...,t‘p|)dt1...dt|P‘,]_
R(pl=1)

where
k
Go(t1, - t1p)) = [ [ Gltp) — togi))
j=1
and
sin(mt)

6(t) = mt
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d-fold case

Consider a random Vandermonde matrix defined as before with phase distribution v such that:
@ v is abs. cont. wrt Lebesgue measure with density p
o peny>1L7([0,1]7)
@ other extra condition

Theorem (T., Whiting)

For every d > 1 we have that

k

o= o oo (47040 )] - 2
PEP(kK)

Moreover, there exists a unique limit measure ;AS,‘Q with these moments and uS,‘fZ has unbounded

support.

Note that for the uniform distribution on [0, 1]¢

m = 37 kgt 3 el

pEP(K) % peP(k)

which is the k-th moment of the Marchenko-Pastur distribution!



Maximum eigenvalue

Let V be a square n X n random Vandermonde matrix with phase distribution v with density p
<R < <)

the e-values of V*V
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Maximum eigenvalue

Let V be a square n X n random Vandermonde matrix with phase distribution v with density p
{M<n< . <A
the e-values of V*V
e A\, €10,n]
@ \y=niffOr =6=...=6,

What is the behaviour of E[\,] as a function of n?



Maximum eigenvalue cont'd

Theorem (T., Whiting)
Assume p € L°°([0,1]), then for every e > 0 and every u > 0 we have that

e u

ne

IP’()\HZ(C+6)|ogn—|—u) <K

where K > 0 is a constant independent on €, u and n and C = (47||p|loc(e — 1) + 1).




Maximum eigenvalue cont'd

Theorem (T., Whiting)
Assume p € L°°([0,1]), then for every e > 0 and every u > 0 we have that

e u

IP’()\HZ(C—Fe)Iogn—i—u) <K n_E

where K > 0 is a constant independent on €, u and n and C = (47||p|loc(e — 1) + 1).

Corollary

E(Ar) < (47llplloc(e — 1) + 1) log n + o(1)




Maximum eigenvalue cont'd

Theorem (T., Whiting)

Let v be a phase distribution which is abs. cont. wrt Lebesgue measure. For any 0 < a < 1

P A, > @-logn =1-o(1)
loglog n

Corollary

E() > S0 (1 (1))
glogn

We have similar results for the d-fold case.
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Figure: Spectral distribution for d = 1 and n = m = 1000

For simplicity consider the square case with uniform distribution.
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For simplicity consider the square case with uniform distribution.

@ Does the limit distribution have an atom at zero? We can prove that (V5 V;,;)~! has no finite
moments.



Questions:

Figure: Spectral distribution for d = 1 and n = m = 1000

For simplicity consider the square case with uniform distribution.

o Does the limit distribution have an atom at zero? We can prove that (V;*V,)™! has no finite
moments.

o Can we find a lower bound for K, ?

Conjecture: For every p € P(k) with |p| blocks

lp|—1

K, > (6(1’1)> ’
- mk




Multivariate Statistics: Covariance Estimates

We have m random variables

Correlation between random variables? from n observations

@ Weather Forecast: Sensor Network where each sensor is measuring temperature, pressure or
other field property

o Military Applications (adaptative sensor array)
o Gene Expression Arrays

o High Dimensional Problems with n < m

We can't perform as many observations as the number of variables!



Mathematical Formulation

Let X be the true m X m covariance matrix

{x1,x2,...,xn} ~ CN(0,X) observations or measurements

. - _ 1o\ ok
Sample covariance Matrix: Ky = = >0, xx — ¥
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Mathematical Formulation

Let X be the true m X m covariance matrix

{x1,x2,...,xn} ~ CN(0,X) observations or measurements

H Ho. _ 1 n S
Sample covariance Matrix: Ky = = >0, xx — ¥

We want to estimate ¥ or ¥~! from the n samples (n < m)
@ K has at least m — n zero eigenvalues
@ In many applications we need X! (e.g. linear estimation)

o regularization method to find an invertible estimate

Classical solution : ridge regression method or diagonal loading
aKx + Bln

where a, 3 > 0
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Estimate ¥ or X! from {x1,Xx2,...,Xn}



New ldea: Dimensional Reduction (Marzetta, Simon, T.)

Estimate ¥ or X! from {x1,Xx2,...,Xn}

1
K= 130 07

o



New ldea: Dimensional Reduction (Marzetta, Simon, T.)

Estimate ¥ or X! from {x1,Xx2,...,Xn}
Ke =150 xix*
x = 5 j=1 XiX;

Fix a parameter p < n (to be tuned later) and consider the Stiefel manifold
Qpm = {¢ € Mp m(C) : dd* = /,,}

with isotropically random prob. measure



New ldea: Dimensional Reduction (Marzetta, Simon, T.)

Estimate ¥ or X! from {x1,Xx2,...,Xn}
1 n Lok
K== 2o Xix;

Fix a parameter p < n (to be tuned later) and consider the Stiefel manifold
Qpm = {¢ € Mp m(C) : dd* = /,,}

with isotropically random prob. measure

Haar Integration Method

covp(Ky) = E(¢*(¢KX¢*)¢)

inveovy(Ky) == IE(CI>*(<I>KX¢*)_1<I>)
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Mathematical properties of covp

Kx is m x m, rank n < m (sample covariance matrix)

covp(Ky) = E(¢*(¢KX¢*)¢)

@ Closed—form expression for the expectation

o covp(K) = mbs ((mp 1) K+ (m— p) - Tr(Ky) - /m)

e Equivalent to diagonal loading!
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Basic properties of invcov,

Decompose K as

K« =UDU* where D =diag(di,...,dn,0m—n) and U unitary

Then
inveovp(Ky) = UE<¢*(¢D¢*)’1¢> U
@ This method preserves the eigenvectors
e invcov, = [EI(Z*(ZKXZ*)*IZ :Z p x m stand. Gaussian)
@ Tom and Steve have formulas for the entries of invcov, but are too complicated!

o E(®*(®D®*)~1®) is diagonal and moreover

E(0*(®D®") 1) = diag(\1, Mo, Ans ilm-n)

o We obtained asymptotic formulas for the entries At's and p (using Free Probability)

@ The e-values \y = A\(di,...,dy) are a function of the non—zero entries. We also have a
functional equation.



Basic properties of invcov,

Decomposing Z = [X, Y] where X is p x n and Y is p X (m — n) independent standard Gaussian
then

) }z*)_lz] _ { E(X*(XDpX*)71X) 0

(o[ D 0O
E[Z (Z{ 0 Om 0 E(Y*(XDoX*)~1Y)

Let {di,d,...,dn,0,0,...,0} be the e-values of Ky
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Basic properties of invcov,

Decomposing Z = [X, Y] where X is p x n and Y is p X (m — n) independent standard Gaussian
then

. D, 0 Ao [ E(XH(XDaX*)7IX) 0
E[Z (Z{ 0 Omon }Z) Z] *{ 0 E(Y*(XDpX*)-1Y)
Let {di,d,...,dn,0,0,...,0} be the e-values of Ky
The matrix invcovp has eigenvalues {1, A2, ..., An, ttn, fen, - - - in} Where

E(Y*(XDpX*)71Y) = Tr E[(XDoX*) ] - lnen = ptndm—n

Assume D, — v in distribution and Iim% = 3 then %XD,,X* converges in distribution also to a

measure 7y

1
—XDpX* — 7.
p



Properties of invcov,

Using classical relations between the Cauchy transform of v and ~ it is not difficult to prove

n— oo

oo
lim pp=p:= / t~1 dy(t)
0

and

— -1 b 1
im 1=P _ 8 =/ du(t).
n— oo n ﬁ 0 1+ut

Asymptotics : p is uniquely determined by the relation

n

n—p 1 1

~ = : = for n large !
n ngl—l—udk P 5L g




Basic properties of invcov, cont'd

It is not difficult to prove that Ay = A¢(d1,...,d,) is a function of the non—zero entries. We
have asymptotic formulas also!

Define Ap(Dp) := diag(A1, A2, ..., An) then

]E(¢*(¢D¢*)—1¢) = diag(Ap(Dn), fthm—n)

Functional Equation

Ao(Dn)Dn + An—p(Dy 1) Dyt = I
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This will be an estimate for g(X).



Basic properties of invcov, cont'd

It is not difficult to prove that Ay = A¢(d1,...,d,) is a function of the non—zero entries. We
have asymptotic formulas also!

Define Ap(Dp) := diag(A1, A2, ..., An) then

]E(¢*(¢D¢*)*1¢) = diag(Ap(Dn), thm—n)

Functional Equation

Ao(Dn)Dn + An—p(Dy 1) Dyt = I

What if we are more ambitious?
Q: Given the matrix K can we compute exactly

E<¢*g(¢K¢*)¢) for g sufficiently nice ?
This will be an estimate for g(X).

A: Yes! Using results from representation theory we have exact closed—formed expressions for
every g continuous.



Exact Solution

Let
Qpn={PeC"™P . &*b=1,}

be the Stiefel manifold with the isotropic measure d¢.

Then for any to Hermitian matrices A and B we have that:

/ s\ (O*BOA)d = \(B)sx(4)
Q sx(In)

pyn
where sy is the Schur polynomial associated with the partition A.

n+Xj—j
det(xl. J ?,j:I
AL>X>... 22X >0

det(x ).,

sx(X) =



Exact Solution cont'd

Theorem

Let D be a diagonal matrix of rank n. For any continuous function f € C[dmin, dmax]

p—1
. P - (k1) det(Gy)
/Q TA(®T D) 40 =D (4 1)1 dex(A(D))

where A(D) is the Vandermonde matrix associated to D and Gy is the matrix defined by
replacing the (k + l)th—row of the Vandermonde matrix by the row

(2.1)

(/(n—p)(x(p—(kﬂ))f(x))|X:d17 o [("—P)(X(P—(k"'l))f‘(X))|X:d")_




Exact Solution cont'd

Theorem

Let D be a diagonal matrix of rank n. For any continuous function f € C[dmin, dmax]

p—1
. _ (n—(k+1))! det(Gg)
/Q T(F(e7DP)) dd = kZ:% (p—(k+1))! det(A(D)) @1

where A(D) is the Vandermonde matrix associated to D and Gy is the matrix defined by
replacing the (k + 1)t'—row of the Vandermonde matrix by the row

(/(nfp)(x(pf(kﬂ))f(x))|X:d17 o /(nfp)(x(pf(kﬂ))f(x))|X:d">_

e

dar=? dim? L. dp?

Gk = agk) agk) S as,k)
dq dy . dn

1 1 1



Exact Solution cont'd

Theorem

Let D be a diagonal matrix of rank n. For any continuous function f € C[dmin, dmax]

p—1
. P - (k1) det(Gy)
/Q TA(®T D) 40 =D (4 1)1 dex(A(D))

where A(D) is the Vandermonde matrix associated to D and Gy is the matrix defined by
replacing the (k + l)th—row of the Vandermonde matrix by the row

(2.1)

(/(n—p)(x(p—(kﬂ))f(x))|X:d17 o [("—P)(X(P—(k"'l))f‘(X))|X:d")_

e

dar=? dim? L. dp?

Gk = agk) agk) S as,k)
d d> dn
1 1 1



Exact Solution cont’d

Lemma

Let f be a differentiable function in the interval [dmin, dmax]. Then

9 /Qp)nTr(f(¢*D¢)) do = [/ Of (O*DP)d* do

Ody Qp.n Kk

As an application let us compute explicitly the elements A\ and p as a function of the d’s:

/\,,(D):/ O(d*DP)1o* dp = diag(A1, -, An)
Qp.n
with 5

M= = Trlog(¢* Do) d

£= gy [, riest®"D®)do

and
w :/ Tr(®*Dd) 1 do
Qp,n

For both these terms the main Theorem gives us a closed form expression.
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Covariance Estimates

Thanks!
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