Random Vandermonde Matrices and Covariance Estimates

Gabriel H. Tucci

Bell Labs

Erwin Schrödinger International Institute April 2011

Random Vandermonde Matrices

Let V_n be the $n \times m$ random matrix of the form

$$V_n = rac{1}{\sqrt{n}} \left[egin{array}{ccccc} 1 & \ldots & 1 \ e^{2\pi i heta_1} & \ldots & e^{2\pi i heta_m} \ dots & dots & dots \ dots & dots \ dots & dots \ dots & dots \ do$$

where the $\{\theta_1, \ldots, \theta_m\}$ are random variables in [0, 1].

Random Vandermonde Matrices

Let V_n be the $n \times m$ random matrix of the form

$$V_n = rac{1}{\sqrt{n}} \left[egin{array}{ccccc} 1 & \dots & 1 \\ e^{2\pi i heta_1} & \dots & e^{2\pi i heta_m} \\ \vdots & \ddots & \vdots \\ e^{2\pi i (n-1) heta_1} & \dots & e^{2\pi i (n-1) heta_m} \end{array}
ight]$$

where the $\{\theta_1, \ldots, \theta_m\}$ are random variables in [0, 1].

We are interested in the limit eigenvalue distribution of the random matrix $V_n^* V_n$ under the conditions that:

• The phases are i.i.d. in the interval [0,1] with probability distribution u

•
$$\lim_{n\to\infty} \frac{n}{m} = c \in (0,\infty)$$

d-fold Random Vandermonde Matrices

More generally, we will be studying the random matrices $V_n^{(d)}$ for $d \ge 1$

Let $\ell = (\ell_1, \dots, \ell_d) \in \{0, 1, \dots, n-1\}^d$ and consider the function

$$f(\ell) = \sum_{j=1}^d n^{j-1} \ell_j$$
 a bijection to $\{0, 1, \dots, n^d - 1\}$

Consider x_1, \ldots, x_m random vectors in $[0, 1]^d$ independent and identically distributed.

We know define the matrix

$$V^{(d)}_{f(\ell),q} = n^{-rac{d}{2}} \exp(2\pi i \langle \ell, x_q \rangle)$$

We are interested in the limit eigenvalue distribution of the random matrix $(V_n^{(d)})^*(V_n^{(d)})$ under the condition $\lim_{n\to\infty} \frac{n^d}{m} = c \in (0,\infty)$

- Let *m* wireless sensors measure the value of a spatially finite physical field (air temperature, pressure, etc) defined over a *d* dimensional compact space
 - One can think of sensor nodes randomly deployed over the geographical region
 - . We want to reconstruct the field from a collection of samples that are noisy
 - Measure reconstruction accuracy by the MSE

- Let *m* wireless sensors measure the value of a spatially finite physical field (air temperature, pressure, etc) defined over a *d* dimensional compact space
 - One can think of sensor nodes randomly deployed over the geographical region
 - . We want to reconstruct the field from a collection of samples that are noisy
 - Measure reconstruction accuracy by the MSE

The sensors $X = \{x_1, x_2, \dots, x_m\} \in [0, 1]^d$. By truncating the field's Fourier series expansion:

$$s(x) pprox n^{-rac{d}{2}} \sum_{\ell} \mathsf{a}_{\ell} \; \mathsf{e}^{2\pi j \langle x, \ell
angle}$$

where *n* is the approximate one-sided bandwidth (per dimension) of the field $\ell = (\ell_1, \ldots, \ell_d)$.

Multidimensional Signal Processing and Sensor Networks cont'd

We can write the vector s as a function of the field spectrum:

$$s = \beta_{n,m}^{-\frac{1}{2}} V^* a$$

where V is the $n^d \times m$ d-fold Vandermonde matrix with sensors iid and $\beta_{n,m} = \frac{n^d}{m}$

Multidimensional Signal Processing and Sensor Networks cont'd

We can write the vector s as a function of the field spectrum:

$$s = \beta_{n,m}^{-\frac{1}{2}} V^* a$$

where V is the $n^d \times m$ d-fold Vandermonde matrix with sensors iid and $\beta_{n,m} = \frac{n^d}{m}$

Let

$$p = (s(x_1) + n_1, s(x_2) + n_2, \dots, s(x_m) + n_m)$$

be the sensor measurements.

Using the Sherman-Morrison-Woodbury identity, we can obtain the MSE as

$$MSE^{(m)} = \operatorname{snr}^{-1}\beta_{n,m} \cdot \mathbb{E}\left(\operatorname{tr}\left\{(V_n^{(d)})(V_n^{(d)})^* + \operatorname{snr}^{-1}\beta_{n,m}\right\}\right)$$

The bottom line is that we need to understand the spectrum of $(V_n^{(d)})^*(V_n^{(d)})$ when n and m are big

Some natural polytopes

Let $k \geq 2$ and consider a partition $\rho \in \mathcal{P}(k)$

$$\rho = \{B_1, \ldots, B_{|\rho|}\}$$

with $|\rho|$ blocks.

Some natural polytopes

Let $k \geq 2$ and consider a partition $\rho \in \mathcal{P}(k)$

$$\rho = \{B_1, \ldots, B_{|\rho|}\}$$

with $|\rho|$ blocks.

For each $i \in \{1, 2, \dots, k\}$ consider a variable $0 \le x_i \le 1$ and for each block j consider the equation

$$E_j : \sum_{i \in B_j} x_{i-1} = \sum_{i \in B_j} x_i$$

Some natural polytopes

Let $k \geq 2$ and consider a partition $\rho \in \mathcal{P}(k)$

$$\rho = \{B_1, \ldots, B_{|\rho|}\}$$

with $|\rho|$ blocks.

For each $i \in \{1, 2, \dots, k\}$ consider a variable $0 \le x_i \le 1$ and for each block j consider the equation

$$E_j : \sum_{i \in B_j} x_{i-1} = \sum_{i \in B_j} x_i$$

The solution set has $k + 1 - |\rho|$ free variables. We define

 $K_{
ho} =$ volume of the solution set in $[0,1]^{k+1-|
ho|}$

Example

Consider k = 4 and the following two partitions :

• Number of free variables is 2

$$E_1 : x_1 + x_3 = x_2 + x_4$$
 & $E_2 : x_2 = x_1$ & $E_3 : x_4 = x_3$

then $x_1 = x_2$ and $x_3 = x_4$ therefore

$$K_{\rho} = 1$$

• The second partition is $\rho = \{\{1,3\},\{2,4\}\}$, the number of free variables is 3 and

$$E_1 = E_2$$
 : $x_1 + x_3 = x_2 + x_4$

then

$$\mathcal{K}_{
ho} = \mathrm{vol}\Big(\{(x_1, x_2, x_3) \in [0, 1]^3 \, : \, 0 \leq x_1 + x_3 - x_2 \leq 1\}\Big) = rac{2}{3}$$

Assume that ν has a continuous density p. Then the asymptotic p-th moment of $V_n^* V_n$

$$m_k = \lim_{m \to \infty} \mathbb{E} \Big[\operatorname{tr}_m (V_n^* V_n)^k) \Big] = \sum_{\rho \in \mathcal{P}(k)} K_{\rho,\nu} c^{|\rho| - 1}$$

exists when $\frac{n}{m} \rightarrow c \in (0,\infty)$ where

$$\mathcal{K}_{
ho,
u} = \mathcal{K}_{
ho} \cdot \int_0^1 p(x)^{|
ho|} dx$$

and $|\rho|$ is the number of blocks of ρ .

Assume that ν has a continuous density p. Then the asymptotic p-th moment of $V_n^* V_n$

$$m_k = \lim_{m \to \infty} \mathbb{E} \Big[\operatorname{tr}_m (V_n^* V_n)^k) \Big] = \sum_{\rho \in \mathcal{P}(k)} K_{\rho,\nu} c^{|\rho| - 1}$$

exists when $\frac{n}{m} \rightarrow c \in (0,\infty)$ where

$$K_{
ho,
u} = K_{
ho} \cdot \int_0^1 p(x)^{|
ho|} dx$$

and $|\rho|$ is the number of blocks of ρ .

 $\bullet\,$ For every partition ρ we have 0 $< {\cal K}_{\rho} \leq$ 1 and corresponds to the uniform distribution

Assume that ν has a continuous density p. Then the asymptotic p-th moment of $V_n^* V_n$

$$m_k = \lim_{m \to \infty} \mathbb{E} \Big[\operatorname{tr}_m (V_n^* V_n)^k) \Big] = \sum_{\rho \in \mathcal{P}(k)} K_{\rho,\nu} c^{|\rho| - 1}$$

exists when $\frac{n}{m} \rightarrow c \in (0,\infty)$ where

$$K_{
ho,
u} = K_{
ho} \cdot \int_0^1 p(x)^{|
ho|} dx$$

and $|\rho|$ is the number of blocks of ρ .

- For every partition ho we have $0 < K_{
 ho} \leq 1$ and corresponds to the uniform distribution
- K_{ρ} is a rational number for every $\rho \in \mathcal{P}(k)$

Assume that ν has a continuous density p. Then the asymptotic p-th moment of $V_n^* V_n$

$$m_k = \lim_{m \to \infty} \mathbb{E} \Big[\operatorname{tr}_m (V_n^* V_n)^k) \Big] = \sum_{\rho \in \mathcal{P}(k)} K_{\rho,\nu} c^{|\rho| - 1}$$

exists when $\frac{n}{m} \rightarrow c \in (0,\infty)$ where

$$K_{
ho,
u} = K_{
ho} \cdot \int_0^1 p(x)^{|
ho|} dx$$

and $|\rho|$ is the number of blocks of ρ .

- For every partition ho we have $0 < K_{
 ho} \leq 1$ and corresponds to the uniform distribution
- K_{ρ} is a rational number for every $\rho \in \mathcal{P}(k)$
- $K_{
 ho} = 1$ if and only if ho is non-crossing

Formula to compute K_{ρ}

Proposition (T., Whiting)

For each partition $\rho \in \mathcal{P}(k)$ with $\rho = \{B_1, \dots, B_{|\rho|}\}$ let $\rho : \{1, 2, \dots, k\} \rightarrow \{1, 2, \dots, |\rho|\}$ given by $\rho(i) = j$ if i is in block j. Then $K_{\rho} = \int_{\mathbb{R}^{(|\rho|-1)}} G_{\rho}(t_1, \dots, t_{|\rho|}) dt_1 \dots dt_{|\rho|-1}$

where

$$G_
ho(t_1,\ldots,t_{|
ho|}) := \prod_{j=1}^k G(t_{
ho(j)} - t_{
ho(j+1)})$$

and

$$G(t) = rac{\sin(\pi t)}{\pi t}$$

Consider a random Vandermonde matrix defined as before with phase distribution u such that:

Consider a random Vandermonde matrix defined as before with phase distribution ν such that:

• ν is abs. cont. wrt Lebesgue measure with density p

Consider a random Vandermonde matrix defined as before with phase distribution u such that:

- $\bullet \ \nu$ is abs. cont. wrt Lebesgue measure with density p
- $p \in \cap_{r \geq 1} L^r([0,1]^d)$

Consider a random Vandermonde matrix defined as before with phase distribution u such that:

- $\bullet \ \nu$ is abs. cont. wrt Lebesgue measure with density p
- $p \in \cap_{r \geq 1} L^r([0,1]^d)$
- other extra condition

Consider a random Vandermonde matrix defined as before with phase distribution u such that:

- ν is abs. cont. wrt Lebesgue measure with density p
- $p \in \cap_{r \ge 1} L^r([0,1]^d)$
- other extra condition

Theorem (T., Whiting)

For every $d \ge 1$ we have that

$$m_{\nu,k}^{(d)} = \lim_{n \to \infty} \mathbb{E} \Big[\operatorname{tr}_{m} \Big\{ \Big((V_{\nu}^{(d)})^{*} (V_{\nu}^{(d)}) \Big)^{k} \Big\} \Big] = \sum_{\rho \in \mathcal{P}(k)} K_{\rho,\nu}^{d} c^{|\rho| - 1}$$

Moreover, there exists a unique limit measure $\mu_{\nu,c}^{(d)}$ with these moments and $\mu_{\nu,c}^{(d)}$ has unbounded support.

Note that for the uniform distribution on $[0, 1]^d$

$$m_k^{(d)} = \sum_{
ho \in \mathcal{P}(k)} \mathcal{K}_{
ho}^d c^{|
ho|-1} \underset{d o \infty}{\longrightarrow} \sum_{
ho \in \mathcal{P}(k)} c^{|
ho|-1}$$

which is the k-th moment of the Marchenko-Pastur distribution!

$$\{\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n\}$$

the e-values of V^*V

$$\{\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n\}$$

the e-values of V^*V

λ_n ∈ [0, n]

$$\{\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n\}$$

the e-values of V^*V

- λ_n ∈ [0, n]
- $\lambda_n = n$ iff $\theta_1 = \theta_2 = \ldots = \theta_n$

$$\{\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n\}$$

the e-values of V^*V

- λ_n ∈ [0, n]
- $\lambda_n = n$ iff $\theta_1 = \theta_2 = \ldots = \theta_n$

What is the behaviour of $\mathbb{E}[\lambda_n]$ as a function of n?

Theorem (T., Whiting)

Assume $p \in L^{\infty}([0,1])$, then for every $\epsilon > 0$ and every $u \ge 0$ we have that

$$\mathbb{P}\Big(\lambda_n \ge (C+\epsilon)\log n + u\Big) \le K \frac{e^{-u}}{n^{\epsilon}}$$

where K > 0 is a constant independent on ϵ , u and n and $C = (4\pi \|p\|_{\infty}(e-1)+1)$.

Theorem (T., Whiting)

Assume $p \in L^{\infty}([0,1])$, then for every $\epsilon > 0$ and every $u \ge 0$ we have that

$$\mathbb{P}\Big(\lambda_n \ge (C+\epsilon)\log n + u\Big) \le K \frac{e^{-u}}{n^{\epsilon}}$$

where K > 0 is a constant independent on ϵ , u and n and $C = (4\pi \|p\|_{\infty}(e-1)+1)$.

Corollary

$$\mathbb{E}(\lambda_n) \leq \left(4\pi \|p\|_{\infty}(e-1)+1\right) \log n + o(1)$$

Theorem (T., Whiting)

Let u be a phase distribution which is abs. cont. wrt Lebesgue measure. For any 0 < lpha < 1

$$\mathbb{P}\left(\lambda_n \geq rac{\alpha \cdot \log n}{\log \log n}
ight) = 1 - o(1)$$

Corollary

$$\mathbb{E}(\lambda_n) \geq rac{lpha \cdot \log n}{\log \log n} (1 - o(1))$$

We have similar results for the d-fold case.

Questions:

Figure: Spectral distribution for d = 1 and n = m = 1000

For simplicity consider the square case with uniform distribution.

Questions:

Figure: Spectral distribution for d = 1 and n = m = 1000

For simplicity consider the square case with uniform distribution.

Does the limit distribution have an atom at zero? We can prove that (V^{*}_nV_n)⁻¹ has no finite moments.

Questions:

Figure: Spectral distribution for d = 1 and n = m = 1000

For simplicity consider the square case with uniform distribution.

- Does the limit distribution have an atom at zero? We can prove that (V^{*}_nV_n)⁻¹ has no finite moments.
- Can we find a lower bound for K_{ρ} ?

Conjecture: For every $\rho \in \mathcal{P}(k)$ with $|\rho|$ blocks

$$\mathcal{K}_{
ho} \geq \left(rac{6(|
ho|-1)}{\pi k}
ight)^{rac{|
ho|-1}{2}}$$

Multivariate Statistics: Covariance Estimates

We have *m* random variables

Correlation between random variables? from n observations

- Weather Forecast: Sensor Network where each sensor is measuring temperature, pressure or other field property
- Military Applications (adaptative sensor array)
- Gene Expression Arrays
- High Dimensional Problems with $n \leq m$

We can't perform as many observations as the number of variables!

Let Σ be the true $m \times m$ covariance matrix

 $\{x_1, x_2, \ldots, x_n\} \sim CN(0, \Sigma)$ observations or measurements

Sample covariance Matrix: $K_x = \frac{1}{n} \sum_{i=1}^n x_i x_i^* \longrightarrow \Sigma$

Let Σ be the true $m \times m$ covariance matrix

 $\{x_1, x_2, \ldots, x_n\} \sim CN(0, \Sigma)$ observations or measurements

Sample covariance Matrix: $K_x = \frac{1}{n} \sum_{i=1}^n x_i x_i^* \longrightarrow \Sigma$

We want to estimate Σ or Σ^{-1} from the *n* samples ($n \leq m$)

• K_x has at least m - n zero eigenvalues

Let Σ be the true $m \times m$ covariance matrix

 $\{x_1, x_2, \ldots, x_n\} \sim CN(0, \Sigma)$ observations or measurements

Sample covariance Matrix: $K_x = \frac{1}{n} \sum_{i=1}^n x_i x_i^* \longrightarrow \Sigma$

We want to estimate Σ or Σ^{-1} from the *n* samples ($n \leq m$)

- K_x has at least m n zero eigenvalues
- In many applications we need Σ^{-1} (e.g. linear estimation)

Let Σ be the true $m \times m$ covariance matrix

 $\{x_1, x_2, \ldots, x_n\} \sim CN(0, \Sigma)$ observations or measurements

Sample covariance Matrix: $K_x = \frac{1}{n} \sum_{i=1}^n x_i x_i^* \longrightarrow \Sigma$

We want to estimate Σ or Σ^{-1} from the *n* samples ($n \leq m$)

- K_x has at least m n zero eigenvalues
- In many applications we need Σ^{-1} (e.g. linear estimation)
- regularization method to find an invertible estimate

Classical solution : ridge regression method or diagonal loading

 $\alpha K_x + \beta I_m$

where $\alpha, \beta > 0$

Estimate Σ or Σ^{-1} from $\{x_1, x_2, \ldots, x_n\}$

Estimate Σ or Σ^{-1} from $\{x_1, x_2, \ldots, x_n\}$

$$K_x = \frac{1}{n} \sum_{i=1}^n x_i x_i^*$$

Estimate Σ or Σ^{-1} from $\{x_1, x_2, \ldots, x_n\}$

$$K_x = \frac{1}{n} \sum_{i=1}^n x_i x_i^*$$

Fix a parameter $p \le n$ (to be tuned later) and consider the Stiefel manifold

$$\Omega_{p,m} := \left\{ \Phi \in M_{p,m}(\mathbb{C}) : \Phi \Phi^* = I_p \right\}$$

with isotropically random prob. measure

Estimate Σ or Σ^{-1} from $\{x_1, x_2, \ldots, x_n\}$

$$K_x = \frac{1}{n} \sum_{i=1}^n x_i x_i^*$$

Fix a parameter $p \leq n$ (to be tuned later) and consider the Stiefel manifold

$$\Omega_{p,m} := \left\{ \Phi \in M_{p,m}(\mathbb{C}) \, : \, \Phi \Phi^* = I_p \right\}$$

with isotropically random prob. measure

Haar Integration Method

$$\operatorname{cov}_{\rho}(K_{x}) := \mathbb{E}\Big(\Phi^{*}(\Phi K_{x} \Phi^{*})\Phi\Big)$$

 $\operatorname{invcov}_{\rho}(K_{x}) := \mathbb{E}\Big(\Phi^{*}(\Phi K_{x} \Phi^{*})^{-1}\Phi\Big)$

$$\operatorname{cov}_{\rho}(K_{x}) := \mathbb{E}\Big(\Phi^{*}(\Phi K_{x} \Phi^{*})\Phi\Big)$$

$$\operatorname{cov}_p(K_x) := \mathbb{E}\Big(\Phi^*(\Phi K_x \Phi^*)\Phi\Big)$$

• Closed-form expression for the expectation

$$\operatorname{cov}_{p}(K_{x}) := \mathbb{E}\Big(\Phi^{*}(\Phi K_{x} \Phi^{*})\Phi\Big)$$

• Closed-form expression for the expectation

•
$$\operatorname{cov}_p(K_x) = \frac{p}{m(m^2-1)} \Big((mp-1) \cdot K_x + (m-p) \cdot \operatorname{Tr}(K_x) \cdot I_m \Big)$$

$$\operatorname{cov}_{p}(K_{x}) := \mathbb{E}\Big(\Phi^{*}(\Phi K_{x} \Phi^{*})\Phi\Big)$$

• Closed-form expression for the expectation

•
$$\operatorname{cov}_{p}(K_{x}) = \frac{p}{m(m^{2}-1)} \Big((mp-1) \cdot K_{x} + (m-p) \cdot \operatorname{Tr}(K_{x}) \cdot I_{m} \Big)$$

• Equivalent to diagonal loading!

Decompose K_x as

$$K_x = U D U^*$$
 where $D = \operatorname{diag}(d_1, \ldots, d_n, 0_{m-n})$ and U unitary

Decompose K_x as

$$K_x = U D U^*$$
 where $D = \operatorname{diag}(d_1, \ldots, d_n, 0_{m-n})$ and U unitary

Then

$$\operatorname{invcov}_{\rho}(K_{x}) = U \mathbb{E} \left(\Phi^{*} (\Phi D \Phi^{*})^{-1} \Phi \right) U^{*}$$

Decompose K_x as

$$K_x = U D U^*$$
 where $D = \operatorname{diag}(d_1, \ldots, d_n, 0_{m-n})$ and U unitary

Then

$$\operatorname{invcov}_{\rho}(K_{x}) = U \mathbb{E} \left(\Phi^{*} (\Phi D \Phi^{*})^{-1} \Phi \right) U^{*}$$

- This method preserves the eigenvectors
- $\operatorname{invcov}_p = \mathbb{E}\Big(Z^*(Z\mathcal{K}_XZ^*)^{-1}Z:Z \ p \times m \text{ stand. Gaussian}\Big)$
- Tom and Steve have formulas for the entries of invcov_p but are too complicated!
- $\mathbb{E}(\Phi^*(\Phi D \Phi^*)^{-1}\Phi)$ is diagonal and moreover $\mathbb{E}(\Phi^*(\Phi D \Phi^*)^{-1}\Phi) = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n, \mu I_{m-n})$
- We obtained asymptotic formulas for the entries λ_k 's and μ (using Free Probability)
- The e-values $\lambda_k = \lambda_k(d_1, \dots, d_n)$ are a function of the non-zero entries. We also have a functional equation.

Decomposing Z = [X, Y] where X is $p \times n$ and Y is $p \times (m - n)$ independent standard Gaussian then

$$\mathbb{E}\Big[Z^*\Big(Z\begin{bmatrix}D_n&0\\0&0_{m-n}\end{bmatrix}Z^*\Big)^{-1}Z\Big]=\begin{bmatrix}\mathbb{E}(X^*(XD_nX^*)^{-1}X)&0\\0&\mathbb{E}(Y^*(XD_nX^*)^{-1}Y)\end{bmatrix}$$

Let $\{d_1, d_2, \ldots, d_n, 0, 0, \ldots, 0\}$ be the e-values of K_x

Decomposing Z = [X, Y] where X is $p \times n$ and Y is $p \times (m - n)$ independent standard Gaussian then

$$\mathbb{E}\Big[Z^*\Big(Z\begin{bmatrix}D_n&0\\0&0_{m-n}\end{bmatrix}Z^*\Big)^{-1}Z\Big]=\begin{bmatrix}\mathbb{E}(X^*(XD_nX^*)^{-1}X)&0\\0&\mathbb{E}(Y^*(XD_nX^*)^{-1}Y)\end{bmatrix}$$

Let $\{d_1, d_2, \ldots, d_n, 0, 0, \ldots, 0\}$ be the e-values of K_x

The matrix invcov_p has eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_n, \mu_n, \mu_n, \dots, \mu_n\}$ where

$$\mathbb{E}(Y^*(XD_nX^*)^{-1}Y) = \operatorname{Tr} \mathbb{E}\left[(XD_nX^*)^{-1}\right] \cdot I_{m-n} = \mu_n I_{m-n}$$

Decomposing Z = [X, Y] where X is $p \times n$ and Y is $p \times (m - n)$ independent standard Gaussian then

$$\mathbb{E}\left[Z^*\left(Z\left[\begin{array}{cc}D_n & 0\\0 & 0_{m-n}\end{array}\right]Z^*\right)^{-1}Z\right] = \left[\begin{array}{cc}\mathbb{E}(X^*(XD_nX^*)^{-1}X) & 0\\0 & \mathbb{E}(Y^*(XD_nX^*)^{-1}Y)\end{array}\right]$$

Let $\{d_1, d_2, \ldots, d_n, 0, 0, \ldots, 0\}$ be the e-values of K_x

The matrix invcov_p has eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_n, \mu_n, \mu_n, \dots, \mu_n\}$ where

$$\mathbb{E}(Y^*(XD_nX^*)^{-1}Y) = \operatorname{Tr} \mathbb{E}[(XD_nX^*)^{-1}] \cdot I_{m-n} = \mu_n I_{m-n}$$

Assume $D_n \longrightarrow \nu$ in distribution and $\lim \frac{n}{p} = \beta$ then $\frac{1}{p} X D_n X^*$ converges in distribution also to a measure γ

$$\frac{1}{p}XD_nX^*\longrightarrow \gamma.$$

Properties of $invcov_p$

Using classical relations between the Cauchy transform of ν and γ it is not difficult to prove

$$\lim_{n\to\infty}\mu_n=\mu:=\int_0^\infty t^{-1}\,d\gamma(t)$$

and

$$\lim_{n\to\infty}\frac{n-p}{n}=\frac{\beta-1}{\beta}=\int_0^\infty\frac{1}{1+\mu t}\,d\nu(t)$$

Asymptotics : μ is uniquely determined by the relation

$${n-p\over n}pprox {1\over n}\sum_{k=1}^n {1\over {1+\mu d_k}}$$
 : $\mu_npprox \mu$ for n large !

It is not difficult to prove that $\lambda_k = \lambda_k(d_1, \dots, d_n)$ is a function of the non-zero entries. We have asymptotic formulas also!

Define $\Lambda_{\rho}(D_n) := \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ then

$$\mathbb{E}\Big(\Phi^*(\Phi D\Phi^*)^{-1}\Phi\Big) = \operatorname{diag}(\Lambda_p(D_n), \mu I_{m-n})$$

Functional Equation

$$\Lambda_p(D_n)D_n + \Lambda_{n-p}(D_n^{-1})D_n^{-1} = I_n$$

It is not difficult to prove that $\lambda_k = \lambda_k(d_1, \dots, d_n)$ is a function of the non-zero entries. We have asymptotic formulas also!

Define $\Lambda_{\rho}(D_n) := \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ then

$$\mathbb{E}\Big(\Phi^*(\Phi D\Phi^*)^{-1}\Phi\Big) = \operatorname{diag}(\Lambda_p(D_n), \mu I_{m-n})$$

Functional Equation

$$\Lambda_p(D_n)D_n + \Lambda_{n-p}(D_n^{-1})D_n^{-1} = I_n$$

It is not difficult to prove that $\lambda_k = \lambda_k(d_1, \dots, d_n)$ is a function of the non-zero entries. We have asymptotic formulas also!

Define $\Lambda_p(D_n) := \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ then $\mathbb{E}\left(\Phi^*(\Phi D \Phi^*)^{-1}\Phi\right) = \operatorname{diag}(\Lambda_p(D_n), \mu I_{m-n})$

Functional Equation

$$\Lambda_p(D_n)D_n + \Lambda_{n-p}(D_n^{-1})D_n^{-1} = I_n$$

What if we are more ambitious?

It is not difficult to prove that $\lambda_k = \lambda_k(d_1, \dots, d_n)$ is a function of the non-zero entries. We have asymptotic formulas also!

Define $\Lambda_p(D_n) := \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ then $\mathbb{E}\left(\Phi^*(\Phi D \Phi^*)^{-1}\Phi\right) = \operatorname{diag}(\Lambda_p(D_n), \mu I_{m-n})$

Functional Equation

$$\Lambda_p(D_n)D_n + \Lambda_{n-p}(D_n^{-1})D_n^{-1} = I_n$$

What if we are more ambitious?

Q: Given the matrix K can we compute exactly

 $\mathbb{E}(\Phi^*g(\Phi K \Phi^*)\Phi)$ for g sufficiently nice ?

This will be an estimate for $g(\Sigma)$.

It is not difficult to prove that $\lambda_k = \lambda_k(d_1, \dots, d_n)$ is a function of the non-zero entries. We have asymptotic formulas also!

Define $\Lambda_p(D_n) := \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ then $\mathbb{E}\left(\Phi^*(\Phi D \Phi^*)^{-1}\Phi\right) = \operatorname{diag}(\Lambda_p(D_n), \mu I_{m-n})$

Functional Equation

$$\Lambda_p(D_n)D_n + \Lambda_{n-p}(D_n^{-1})D_n^{-1} = I_n$$

What if we are more ambitious?

Q: Given the matrix K can we compute exactly

 $\mathbb{E}(\Phi^*g(\Phi K \Phi^*)\Phi)$ for g sufficiently nice ?

This will be an estimate for $g(\Sigma)$.

A: Yes! Using results from representation theory we have exact closed-formed expressions for every g continuous.

Exact Solution

Let

$$\Omega_{\rho,n} = \{ \Phi \in \mathbb{C}^{n \times p} : \Phi^* \Phi = I_{\rho} \}$$

be the Stiefel manifold with the isotropic measure $d\phi$.

Then for any to Hermitian matrices A and B we have that:

$$\int_{\Omega_{p,n}} s_{\lambda}(\Phi^* B \Phi A) d\phi = \frac{s_{\lambda}(B)s_{\lambda}(A)}{s_{\lambda}(I_n)}$$

where s_{λ} is the Schur polynomial associated with the partition λ .

$$s_{\lambda}(X) = \frac{\det(x_i^{n+\lambda_j-j})_{i,j=1}^n}{\det(x_i^{n-j})_{i,j=1}^n}, \qquad \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n \ge 0$$

Theorem

Let D be a diagonal matrix of rank n. For any continuous function $f \in C[d_{min}, d_{max}]$

$$\int_{\Omega_{p,n}} \operatorname{Tr}(f(\Phi^* D\Phi)) \, d\phi = \sum_{k=0}^{p-1} \frac{(n-(k+1))!}{(p-(k+1))!} \cdot \frac{\det(G_k)}{\det(\Delta(D))}$$
(2.1)

where $\Delta(D)$ is the Vandermonde matrix associated to D and G_k is the matrix defined by replacing the $(k + 1)^{th}$ -row of the Vandermonde matrix by the row

$$(I^{(n-p)}(x^{(p-(k+1))}f(x))|_{x=d_1},\ldots,I^{(n-p)}(x^{(p-(k+1))}f(x))|_{x=d_n}).$$

Theorem

Let D be a diagonal matrix of rank n. For any continuous function $f \in C[d_{min}, d_{max}]$

$$\int_{\Omega_{p,n}} \operatorname{Tr}(f(\Phi^* D\Phi)) \, d\phi = \sum_{k=0}^{p-1} \frac{(n-(k+1))!}{(p-(k+1))!} \cdot \frac{\det(G_k)}{\det(\Delta(D))}$$
(2.1)

where $\Delta(D)$ is the Vandermonde matrix associated to D and G_k is the matrix defined by replacing the $(k + 1)^{th}$ -row of the Vandermonde matrix by the row

$$(I^{(n-p)}(x^{(p-(k+1))}f(x))|_{x=d_1},\ldots,I^{(n-p)}(x^{(p-(k+1))}f(x))|_{x=d_n}).$$

$$G_{k} = \begin{pmatrix} d_{1}^{n-1} & d_{2}^{n-1} & \dots & d_{n}^{n-1} \\ d_{1}^{n-2} & d_{2}^{n-2} & \dots & d_{n}^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1}^{(k)} & a_{2}^{(k)} & \dots & a_{n}^{(k)} \\ \vdots & \vdots & \ddots & \vdots \\ d_{1} & d_{2} & \dots & d_{n} \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

Theorem

Let D be a diagonal matrix of rank n. For any continuous function $f \in C[d_{min}, d_{max}]$

$$\int_{\Omega_{p,n}} \operatorname{Tr}(f(\Phi^* D\Phi)) \, d\phi = \sum_{k=0}^{p-1} \frac{(n-(k+1))!}{(p-(k+1))!} \cdot \frac{\det(G_k)}{\det(\Delta(D))}$$
(2.1)

where $\Delta(D)$ is the Vandermonde matrix associated to D and G_k is the matrix defined by replacing the $(k + 1)^{th}$ -row of the Vandermonde matrix by the row

$$\Big(I^{(n-p)}(x^{(p-(k+1))}f(x))|_{x=d_1},\ldots,I^{(n-p)}(x^{(p-(k+1))}f(x))|_{x=d_n}\Big).$$

$$G_{k} = \begin{pmatrix} d_{1}^{n-1} & d_{2}^{n-1} & \dots & d_{n}^{n-1} \\ d_{1}^{n-2} & d_{2}^{n-2} & \dots & d_{n}^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1}^{(k)} & a_{2}^{(k)} & \dots & a_{n}^{(k)} \\ \vdots & \vdots & \ddots & \vdots \\ d_{1} & d_{2} & \dots & d_{n} \\ 1 & 1 & \dots & 1 \end{pmatrix}$$
$$a_{i}^{(k)} = I^{(n-p)}(x^{(p-k)}f(x))|_{x=d_{i}}$$

Lemma

Let f be a differentiable function in the interval $[d_{min}, d_{max}]$. Then

$$\frac{\partial}{\partial d_k} \int_{\Omega_{p,n}} \operatorname{Tr} \Big(f(\Phi^* D \Phi) \Big) \ d\phi = \left[\int_{\Omega_{p,n}} \Phi f'(\Phi^* D \Phi) \Phi^* \ d\phi \right]_{kk}$$

As an application let us compute explicitly the elements λ_k and μ as a function of the d_i 's:

$$\Lambda_p(D) = \int_{\Omega_{p,n}} \Phi(\Phi^* D \Phi)^{-1} \Phi^* d\phi = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$$

with

$$\lambda_k = \frac{\partial}{\partial d_k} \int_{\Omega_{p,n}} \operatorname{Tr} \log(\Phi^* D \Phi) \, d\phi$$

and

$$\mu = \int_{\Omega_{\rho,n}} \operatorname{Tr}(\Phi^* D\Phi)^{-1} d\phi$$

For both these terms the main Theorem gives us a closed form expression.

Simulations Results: Toeplitz and White Noise

Simulations Results: Toeplitz and White Noise

Thanks!