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Random Vandermonde Matrices

Let Vn be the n ×m random matrix of the form

Vn =
1
√

n

26664
1 . . . 1

e2πiθ1 . . . e2πiθm

...
. . .

...

e2πi(n−1)θ1 . . . e2πi(n−1)θm

37775
where the {θ1, . . . , θm} are random variables in [0, 1].

We are interested in the limit eigenvalue distribution of the random matrix V ∗n Vn under the
conditions that:

The phases are i.i.d. in the interval [0, 1] with probability distribution ν

limn→∞
n
m

= c ∈ (0,∞)
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d-fold Random Vandermonde Matrices

More generally, we will be studying the random matrices V
(d)
n for d ≥ 1

Let ` = (`1, . . . , `d ) ∈ {0, 1, . . . , n − 1}d and consider the function

f (`) =
dX

j=1

nj−1`j a bijection to {0, 1, . . . , nd − 1}

Consider x1, . . . , xm random vectors in [0, 1]d independent and identically distributed.

We know define the matrix
V

(d)
f (`),q

= n−
d
2 exp(2πi〈`, xq〉)

We are interested in the limit eigenvalue distribution of the random matrix (V
(d)
n )∗(V

(d)
n ) under

the condition limn→∞
nd

m
= c ∈ (0,∞)



Why do we care?

Let m wireless sensors measure the value of a spatially finite physical field (air temperature,
pressure, etc) defined over a d dimensional compact space

One can think of sensor nodes randomly deployed over the geographical region

We want to reconstruct the field from a collection of samples that are noisy

Measure reconstruction accuracy by the MSE

The sensors X = {x1, x2, . . . , xm} ∈ [0, 1]d . By truncating the field’s Fourier series expansion:

s(x) ≈ n−
d
2

X
`

a` e2πj〈x,`〉

where n is the approximate one-sided bandwidth (per dimension) of the field ` = (`1, . . . , `d ).
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Multidimensional Signal Processing and Sensor Networks cont’d

We can write the vector s as a function of the field spectrum:

s = β
− 1

2
n,m V ∗a

where V is the nd ×m d-fold Vandermonde matrix with sensors iid and βn,m = nd

m

Let
p = (s(x1) + n1, s(x2) + n2, . . . , s(xm) + nm)

be the sensor measurements.

Using the Sherman-Morrison-Woodbury identity, we can obtain the MSE as

MSE (m) = snr−1βn,m · E
“
tr
n

(V
(d)
n )(V

(d)
n )∗ + snr−1βn,m

o”

The bottom line is that we need to understand the spectrum of (V
(d)
n )∗(V

(d)
n ) when n and m are

big
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Some natural polytopes

Let k ≥ 2 and consider a partition ρ ∈ P(k)

ρ = {B1, . . . ,B|ρ|}

with |ρ| blocks.

For each i ∈ {1, 2, . . . , k} consider a variable 0 ≤ xi ≤ 1 and for each block j consider the
equation

Ej :
X
i∈Bj

xi−1 =
X
i∈Bj

xi

The solution set has k + 1− |ρ| free variables. We define

Kρ = volume of the solution set in [0, 1]k+1−|ρ|
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Example

Consider k = 4 and the following two partitions :

Number of free variables is 2

E1 : x1 + x3 = x2 + x4 & E2 : x2 = x1 & E3 : x4 = x3

then x1 = x2 and x3 = x4 therefore
Kρ = 1

The second partition is ρ = {{1, 3}, {2, 4}}, the number of free variables is 3 and

E1 = E2 : x1 + x3 = x2 + x4

then

Kρ = vol
“
{(x1, x2, x3) ∈ [0, 1]3 : 0 ≤ x1 + x3 − x2 ≤ 1}

”
=

2

3



Moments’ formulas

Theorem (Ryan and Debbah)

Assume that ν has a continuous density p. Then the asymptotic p-th moment of V ∗n Vn

mk = lim
m→∞

E
h
trm(V ∗n Vn)k )

i
=

X
ρ∈P(k)

Kρ,νc|ρ|−1

exists when n
m
→ c ∈ (0,∞) where

Kρ,ν = Kρ ·
Z 1

0
p(x)|ρ| dx

and |ρ| is the number of blocks of ρ.

For every partition ρ we have 0 < Kρ ≤ 1 and corresponds to the uniform distribution

Kρ is a rational number for every ρ ∈ P(k)

Kρ = 1 if and only if ρ is non–crossing



Moments’ formulas

Theorem (Ryan and Debbah)

Assume that ν has a continuous density p. Then the asymptotic p-th moment of V ∗n Vn

mk = lim
m→∞

E
h
trm(V ∗n Vn)k )

i
=

X
ρ∈P(k)

Kρ,νc|ρ|−1

exists when n
m
→ c ∈ (0,∞) where

Kρ,ν = Kρ ·
Z 1

0
p(x)|ρ| dx

and |ρ| is the number of blocks of ρ.

For every partition ρ we have 0 < Kρ ≤ 1 and corresponds to the uniform distribution

Kρ is a rational number for every ρ ∈ P(k)

Kρ = 1 if and only if ρ is non–crossing



Moments’ formulas

Theorem (Ryan and Debbah)

Assume that ν has a continuous density p. Then the asymptotic p-th moment of V ∗n Vn

mk = lim
m→∞

E
h
trm(V ∗n Vn)k )

i
=

X
ρ∈P(k)

Kρ,νc|ρ|−1

exists when n
m
→ c ∈ (0,∞) where

Kρ,ν = Kρ ·
Z 1

0
p(x)|ρ| dx

and |ρ| is the number of blocks of ρ.

For every partition ρ we have 0 < Kρ ≤ 1 and corresponds to the uniform distribution

Kρ is a rational number for every ρ ∈ P(k)

Kρ = 1 if and only if ρ is non–crossing



Moments’ formulas

Theorem (Ryan and Debbah)

Assume that ν has a continuous density p. Then the asymptotic p-th moment of V ∗n Vn

mk = lim
m→∞

E
h
trm(V ∗n Vn)k )

i
=

X
ρ∈P(k)

Kρ,νc|ρ|−1

exists when n
m
→ c ∈ (0,∞) where

Kρ,ν = Kρ ·
Z 1

0
p(x)|ρ| dx

and |ρ| is the number of blocks of ρ.

For every partition ρ we have 0 < Kρ ≤ 1 and corresponds to the uniform distribution

Kρ is a rational number for every ρ ∈ P(k)

Kρ = 1 if and only if ρ is non–crossing



Formula to compute Kρ

Proposition (T., Whiting)

For each partition ρ ∈ P(k) with
ρ = {B1, . . . ,B|ρ|}

let ρ : {1, 2, . . . , k} → {1, 2, . . . , |ρ|} given by ρ(i) = j if i is in block j. Then

Kρ =

Z
R(|ρ|−1)

Gρ(t1, . . . , t|ρ|) dt1 . . . dt|ρ|−1

where

Gρ(t1, . . . , t|ρ|) :=
kY

j=1

G(tρ(j) − tρ(j+1))

and

G(t) =
sin(πt)

πt



d-fold case

Consider a random Vandermonde matrix defined as before with phase distribution ν such that:

ν is abs. cont. wrt Lebesgue measure with density p

p ∈ ∩r≥1Lr ([0, 1]d )

other extra condition

Theorem (T., Whiting)

For every d ≥ 1 we have that

m
(d)
ν,k = lim

n→∞
E
h
trm

n“
(V

(d)
ν )∗(V

(d)
ν )

”koi
=

X
ρ∈P(k)

K d
ρ,νc|ρ|−1

Moreover, there exists a unique limit measure µ
(d)
ν,c with these moments and µ

(d)
ν,c has unbounded

support.

Note that for the uniform distribution on [0, 1]d

m
(d)
k =

X
ρ∈P(k)

K d
ρ c|ρ|−1 −→

d→∞

X
ρ∈P(k)

c|ρ|−1

which is the k-th moment of the Marchenko-Pastur distribution!
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Maximum eigenvalue

Let V be a square n × n random Vandermonde matrix with phase distribution ν with density p

{λ1 ≤ λ2 ≤ . . . ≤ λn}

the e-values of V ∗V

λn ∈ [0, n]

λn = n iff θ1 = θ2 = . . . = θn

What is the behaviour of E[λn] as a function of n?
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Maximum eigenvalue cont’d

Theorem (T., Whiting)

Assume p ∈ L∞([0, 1]), then for every ε > 0 and every u ≥ 0 we have that

P
“
λn ≥ (C + ε) log n + u

”
≤ K

e−u

nε

where K > 0 is a constant independent on ε, u and n and C =
`
4π‖p‖∞(e − 1) + 1

´
.

Corollary

E(λn) ≤
“

4π‖p‖∞(e − 1) + 1
”

log n + o(1)
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Maximum eigenvalue cont’d

Theorem (T., Whiting)

Let ν be a phase distribution which is abs. cont. wrt Lebesgue measure. For any 0 < α < 1

P
 
λn ≥

α · log n

log log n

!
= 1− o(1)

Corollary

E(λn) ≥
α · log n

log log n
(1− o(1))

We have similar results for the d-fold case.



Questions:

Figure: Spectral distribution for d = 1 and n = m = 1000

For simplicity consider the square case with uniform distribution.

Does the limit distribution have an atom at zero? We can prove that (V ∗n Vn)−1 has no finite
moments.

Can we find a lower bound for Kρ ?

Conjecture: For every ρ ∈ P(k) with |ρ| blocks

Kρ ≥
 

6(|ρ| − 1)

πk

! |ρ|−1
2
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Multivariate Statistics: Covariance Estimates

We have m random variables

Correlation between random variables? from n observations

Weather Forecast: Sensor Network where each sensor is measuring temperature, pressure or
other field property

Military Applications (adaptative sensor array)

Gene Expression Arrays

High Dimensional Problems with n ≤ m

We can’t perform as many observations as the number of variables!



Mathematical Formulation

Let Σ be the true m ×m covariance matrix

{x1, x2, . . . , xn} ∼ CN(0,Σ) observations or measurements

Sample covariance Matrix: Kx = 1
n

Pn
i=1 xi x

∗
i −→ Σ

We want to estimate Σ or Σ−1 from the n samples (n ≤ m)

Kx has at least m − n zero eigenvalues

In many applications we need Σ−1 (e.g. linear estimation)

regularization method to find an invertible estimate

Classical solution : ridge regression method or diagonal loading

αKx + βIm

where α, β > 0
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New Idea: Dimensional Reduction (Marzetta, Simon, T.)

Estimate Σ or Σ−1 from {x1, x2, . . . , xn}

Kx = 1
n

Pn
i=1 xi x

∗
i

Fix a parameter p ≤ n (to be tuned later) and consider the Stiefel manifold

Ωp,m :=
n

Φ ∈ Mp,m(C) : ΦΦ∗ = Ip
o

with isotropically random prob. measure

Haar Integration Method

covp(Kx ) := E
“

Φ∗(ΦKx Φ∗)Φ
”

invcovp(Kx ) := E
“

Φ∗(ΦKx Φ∗)−1Φ
”
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Mathematical properties of covp

Kx is m ×m, rank n ≤ m (sample covariance matrix)

covp(Kx ) := E
“

Φ∗(ΦKx Φ∗)Φ
”

Closed–form expression for the expectation

covp(Kx ) = p
m(m2−1)

“
(mp − 1) · Kx + (m − p) · Tr(Kx ) · Im

”
Equivalent to diagonal loading!
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Basic properties of invcovp

Decompose Kx as

Kx = U D U∗ where D = diag(d1, . . . , dn, 0m−n) and U unitary

Then
invcovp(Kx ) = U E

“
Φ∗(ΦDΦ∗)−1Φ

”
U∗

This method preserves the eigenvectors

invcovp = E
“

Z∗(ZKx Z∗)−1Z : Z p ×m stand. Gaussian
”

Tom and Steve have formulas for the entries of invcovp but are too complicated!

E
“

Φ∗(ΦDΦ∗)−1Φ
”

is diagonal and moreover

E
“

Φ∗(ΦDΦ∗)−1Φ
”

= diag(λ1, λ2, . . . , λn, µIm−n)

We obtained asymptotic formulas for the entries λk ’s and µ (using Free Probability)

The e-values λk = λk (d1, . . . , dn) are a function of the non–zero entries. We also have a
functional equation.
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Basic properties of invcovp

Decomposing Z = [X ,Y ] where X is p × n and Y is p × (m − n) independent standard Gaussian
then

E
h
Z∗
“

Z

»
Dn 0
0 0m−n

–
Z∗
”−1

Z
i

=

»
E(X∗(XDnX∗)−1X ) 0

0 E(Y ∗(XDnX∗)−1Y )

–

Let {d1, d2, . . . , dn, 0, 0, . . . , 0} be the e-values of Kx

The matrix invcovp has eigenvalues {λ1, λ2, . . . , λn, µn, µn, . . . , µn} where

E(Y ∗(XDnX∗)−1Y ) = Tr E [(XDnX∗)−1] · Im−n = µnIm−n

Assume Dn −→ ν in distribution and lim n
p

= β then 1
p

XDnX∗ converges in distribution also to a
measure γ

1

p
XDnX∗ −→ γ.
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Properties of invcovp

Using classical relations between the Cauchy transform of ν and γ it is not difficult to prove

lim
n→∞

µn = µ :=

Z ∞
0

t−1 dγ(t)

and

lim
n→∞

n − p

n
=
β − 1

β
=

Z ∞
0

1

1 + µt
dν(t).

Asymptotics : µ is uniquely determined by the relation

n − p

n
≈

1

n

nX
k=1

1

1 + µdk
: µn ≈ µ for n large !



Basic properties of invcovp cont’d

It is not difficult to prove that λk = λk (d1, . . . , dn) is a function of the non–zero entries. We
have asymptotic formulas also!

Define Λp(Dn) := diag(λ1, λ2, . . . , λn) then

E
“

Φ∗(ΦDΦ∗)−1Φ
”

= diag(Λp(Dn), µIm−n)

Functional Equation

Λp(Dn)Dn + Λn−p(D−1
n )D−1

n = In

What if we are more ambitious?

Q: Given the matrix K can we compute exactly

E
“

Φ∗g(ΦKΦ∗)Φ
”

for g sufficiently nice ?

This will be an estimate for g(Σ).

A: Yes! Using results from representation theory we have exact closed–formed expressions for
every g continuous.
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Exact Solution

Let
Ωp,n = {Φ ∈ Cn×p : Φ∗Φ = Ip}

be the Stiefel manifold with the isotropic measure dφ.

Then for any to Hermitian matrices A and B we have that:Z
Ωp,n

sλ(Φ∗BΦA)dφ =
sλ(B)sλ(A)

sλ(In)

where sλ is the Schur polynomial associated with the partition λ.

sλ(X ) =
det(x

n+λj−j

i )n
i,j=1

det(xn−j
i )n

i,j=1

, λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0



Exact Solution cont’d

Theorem

Let D be a diagonal matrix of rank n. For any continuous function f ∈ C [dmin, dmax ]

Z
Ωp,n

Tr(f (Φ∗DΦ)) dφ =

p−1X
k=0

(n − (k + 1))!

(p − (k + 1))!
·

det(Gk )

det(∆(D))
(2.1)

where ∆(D) is the Vandermonde matrix associated to D and Gk is the matrix defined by
replacing the (k + 1)th–row of the Vandermonde matrix by the row“

I (n−p)(x(p−(k+1))f (x))|x=d1
, . . . , I (n−p)(x(p−(k+1))f (x))|x=dn

”
.

Gk =

0BBBBBBBBBBB@

dn−1
1 dn−1

2 . . . dn−1
n

dn−2
1 dn−2

2 . . . dn−2
n

...
...

. . .
...

a
(k)
1 a

(k)
2 . . . a

(k)
n

...
...

. . .
...

d1 d2 . . . dn

1 1 . . . 1

1CCCCCCCCCCCA
a

(k)
i = I (n−p)(x(p−k)f (x))|x=di
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Exact Solution cont’d

Lemma

Let f be a differentiable function in the interval [dmin, dmax ]. Then

∂

∂dk

Z
Ωp,n

Tr
“

f (Φ∗DΦ)
”

dφ =

"Z
Ωp,n

Φf ′(Φ∗DΦ)Φ∗ dφ

#
kk

As an application let us compute explicitly the elements λk and µ as a function of the di ’s:

Λp(D) =

Z
Ωp,n

Φ(Φ∗DΦ)−1Φ∗ dφ = diag(λ1, . . . , λn)

with

λk =
∂

∂dk

Z
Ωp,n

Tr log(Φ∗DΦ) dφ

and

µ =

Z
Ωp,n

Tr(Φ∗DΦ)−1 dφ

For both these terms the main Theorem gives us a closed form expression.



Simulations Results: Toeplitz and White Noise
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Covariance Estimates

Thanks!
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