

Prof. Wolfgang Woess, Winter semester 2014/15

22.) [3 points] Let $(\Omega, \mathcal{A}, \mathbb{P}) = ([0, 1), \mathcal{B}_{[0,1)}, \lambda)$ be the Lebesgue probability space, and let

$$(\Omega^*, \mathcal{A}^*, \mathbb{P}^*) = (\{0, 1\}, \mathcal{P}(\{0, 1\}), B(1, \frac{1}{2}))^{\mathbb{N}}$$

be the product space of countably many copies of the standard Bernoulli space (i.e., $B(1, \frac{1}{2})$ is Bernoulli distribution with $\theta = \frac{1}{2}$).

Consider the mapping $\tau : [0, 1) \to \Omega^*$,

$$\tau(\omega) = \left(X_n(\omega)\right)_{n \in \mathbb{N}},\,$$

where X_n is as in Exercise 18.

Show that τ is measurable and injective. Determine $\mathbb{P}^*(\Omega^* \setminus \tau(\Omega))$. Show that τ is measure preserving, that is, $\mathbb{P}(\tau^{-1}A) = \mathbb{P}^*(A)$ for every $A \in \mathcal{A}^*$.

23.) [3 points] Let $T : [0, 1) \to [0, 1)$ be the mapping $T(\omega) = 2\omega - \lfloor 2\omega \rfloor$ on the Lebesgue probability space.

Prove that T is measure preserving and ergodic.

Hint: you can combine Exercise 22 with the Kolmogorov 0-1 Law.

24.) Let $(X_n)_{n\geq 1}$ be a sequence of independent, real random variables defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.

a) [3 points] Show that the σ -algebras $\mathcal{A}(X_1, \ldots, X_k)$ and $\mathcal{A}(X_{k+1}, \ldots, X_n)$ are independent for any choice of k, n with $1 \leq k < n$.

Hint: recall that $\mathcal{A}(X_{k+1}, \ldots, X_n)$ consists of all events $[(X_1, \ldots, X_k) \in B]$, where B is in the Borel σ -algebra of \mathbb{R}^k . Use tha fact that the latter is generated by the semialgebra of all sets $B_1 \times \ldots B_k$, where B_j is a Borel set in \mathbb{R} , and analogously for \mathbb{R}^{n-k} .

b) [3 points] Show that the σ -albegras $\mathcal{A}(X_1, \ldots, X_k)$ and $\mathcal{A}(X_{k+1}, X_{k+2}, \ldots)$ are independent.

Deduce that if $f(X_1, \ldots, X_k)$ and $g(X_{k+1}, X_{k+2}, \ldots)$ are measurable (real) functions of the respective sequences, then they are also independent.

Remark: "measurable" means that $f : \mathbb{R}^n \to \mathbb{R}$ is Borel measurable, and that $g : \mathbb{R}^N \to \mathbb{R}$ is well defined and Borel measurable with respect to the infinite product Borel σ -algebra restricted to the range of $(X_{k+1}, X_{k+2}, \ldots)$.

Example: $|X_n| \le 1$ for all *n*, and $g(X_{k+1}, X_{k+2}, ...) = \sum_{n=k+1}^{\infty} 2^{-n} X_n$.

c) [2pt] Now let $(Y_n)_{n\geq 1}$ be a second sequence of independent random variables, independent of $(X_n)_{n\geq 1}$. [That is, the random variables $X_1, Y_1, X_2, Y_2, \ldots$ are all independent.] Show that $\mathcal{A}(X_1, X_2, \ldots)$ and $\mathcal{A}(Y_1, Y_2, \ldots)$ are independent.

Deduce that, as an example, if $|X_n|, |Y_n| \leq 1$ for all n, then

$$\sum_{n=1}^{\infty} 2^{-n} X_n \text{ and } \sum_{n=1}^{\infty} 2^{-n} Y_n \text{ are independent.}$$

For a complex-valued random variable $U + \mathfrak{i} V$, the expectation is defined as $\mathbb{E}(U + \mathfrak{i} V) = \mathbb{E}(U) + \mathfrak{i} \mathbb{E}(V)$, if both U and V are integrable ($\iff \mathbb{E}(|U + \mathfrak{i} V|) < \infty$). The *characteristic function* $\varphi_X : \mathbb{R} \to \mathbb{C}$ of a real random variable X is defined as

$$\varphi_X(t) = \mathbb{E}(e^{\mathbf{i}\,tX})\,.$$

25.) [3 points]

a) Determine the characteristic function of X, if X has Bernoulli distribution $B(1,\theta)$

b) Let X, Y be two independent random variables. Express the characteristic function of X + Y in terms of the characteristic functions of X and of Y.

c) Determine the characteristic function of X, if X has binomial distribution $B(n, \theta)$. Use parts a and b for solving c!

26.) [3 points] Determine the characteristic function of X, if X is

a) Poisson distributed with parameter $\xi > 0$,

b) uniformly distributed on [0, 1],

c) exponentially distributed with parameter $\lambda > 0$.