

Prof. Wolfgang Woess, Winter semester 2014/15

Institut für Mathematische Strukturtheorie

36.) Let Y be a random variable with values in \mathbb{N}_0 , and P its distribution; $P(n) = \mathbb{P}[Y = n]$. The probability generating function (p.g.f.) of Y, resp. P, is

$$f_Y(z) = f_P(z) = \sum_{n=0}^{\infty} P(n) z^n, \quad |z| \le 1.$$

(a) [2 points] Compute the left-sided derivative $f'_P(1-)$. Verify that 1 is a fixed point of $f_P(z)$. Discuss the shape of that function on [0, 1]. Under which conditions is there another fixed point besides 1 ?

(b) [2 points] Given two independent random variables Y_1, Y_2 with values in \mathbb{N}_0 , express the p.g.f. of $Y_1 + Y_2$ in terms of f_{Y_1} and f_{Y_2} .

Let P be a probability distribution on \mathbb{N}_0 . The Galton-Watson process with offspring distribution P is a stochastic process $(X_n)_{n\geq 0}$ evolving on \mathbb{N}_0 as follows.

 $X_0 = 1$ and, if $X_{n-1} = k$ then the distribution of X_n is that of the sum k i.i.d. random variables each with distribution P. That is,

$$\mathbb{P}[X_n = m \mid X_{n-1} = k] = \mathbb{P}[Y_1^{(n)} + \dots + Y_k^{(n)} = m]$$

where $(Y_i^{(n)})$ is a double sequence of i.i.d. *P*-distributed RVs.

Interpretation: "family tree" starting with 1 ancestor in generation 0. X_n is the number of elements in the *n*-th generation. Each member in each generation produces a random number of offspring (children) independently of all other family members, with distribution P.

We are interested in the *extinction probability* $\lambda = \mathbb{P}[\exists n: X_n = 0].$ We suppose that we do *not* have P(0) + P(1) = 1.

37.) Let $g_n(z)$ be the p.g.f. of X_n .

(a) [2 points] Use the preceding exercise and $f_P(z)$ to show that $g_n = f_P \circ g_{n-1}$. Apply this to relate $\mathbb{P}[X_n = 0]$ with $\mathbb{P}[X_{n-1} = 0]$.

(b) [2 points] Justify that $\mathbb{P}[X_n = 0] \nearrow \lambda$. Deduce from this fact and (a) that λ is the smallest fixed point of $f_P(z)$ in [0, 1].

38.) (a) [2 points] Give a general criterion for $\mathbb{P}[\text{survival}] = 1 - \lambda > 0.$

(b) [1 point] Compute λ when P(0) = q, P(2) = p, where p + q = 1.

39.) Note that (X_n) is a Markov chain: conditionally upon X_n , the random variables X_{n+1} and (X_1, \ldots, X_{n-1}) are independent.

(a) [3 points] Use this fact to compute

$$\mathbb{E}(X_{n+1}|X_n,\ldots X_1) = \mathbb{E}(X_{n+1} \mid \mathcal{F}_n),$$

where $\mathcal{F}_n = \sigma(X_1, \ldots, X_n).$

(b) [2 points] Find a sequence of positive numbers M_n such that $(X_n/M_n)_{n\geq 0}$ is a martingale with respect to $(\mathcal{F}_n)_{n\geq 0}$.

Is the martingale limit theorem applicable ?