Adrian Fuchs and Gundelinde Wiegel

Mathematical foundations of information theory SS 2018 Exercise Sheet 1

 14^{th} of March 2018

Exercise 1 (1 Point). Is $\{\emptyset, \{b\}, \{a, c\}, \{d, b\}, \{a, b, c, d\}\}$ a σ -algebra over $\Omega = \{a, b, c, d\}$? If not, which elements are missing? How would you interpret the "information" described by the correct σ -algebra?

Exercise 2 (1 Point). Let $A, B \subset \Omega$ be events with $\mathbb{P}(B) > 0$. Show that:

- (a) $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B) \iff \mathbb{P}(A \mid B) = \mathbb{P}(A)$
- (b) Let $A \cap B = \emptyset$. Show that $\mathbb{P}(A \mid B) = 0$.
- (c) $\mathbb{P}(A \mid \Omega) = \mathbb{P}(A)$. What does that mean?

Exercise 3 (1 Point). Let $A, B \subset \Omega$ be independent events. Show that:

- (a) The events A and $B^c = \Omega \setminus B$ are independent.
- (b) The events A^c and B^c are independent.

Exercise 4 (2 Points). Consider two independent rolls of a fair six-sided die, and the following events: $A = \{ 1 \text{ st roll is } 1, 2 \text{ or } 3 \}, B = \{ 1 \text{ st roll is } 3, 4 \text{ or } 5 \}$ and $C = \{ \text{ the sum of the two rolls is } 9 \}$.

- (a) Show that $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)$.
- (b) Are the three events independent?

Exercise 5 (2 Points). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and $A, B, C \in \mathcal{A}$ some events. Show that:

- (a) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B).$
- (b) $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) \mathbb{P}(A \cap B) \mathbb{P}(B \cap C) \mathbb{P}(A \cap C) + \mathbb{P}(A \cap B \cap C).$
- (c) $\mathbb{P}(A \cap B) \ge \mathbb{P}(A) + \mathbb{P}(B) 1$. When do we have equality?
- (d) (Rule of total probability) Let $B \subseteq \bigcup_{n=1}^{\infty} A_n$ where $A_n \in \mathcal{A}$ for each $n \in \mathbb{N}$. Then

$$\mathbb{P}(B) = \sum_{n=1}^{\infty} \mathbb{P}(A_n) \mathbb{P}(B \mid A_n).$$

Exercise 6 (2 Point). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Let $A \in \mathcal{A}$ and $(A_n)_{n \in \mathbb{N}}$ be a sequence of sets, which fulfils $A_n \in \mathcal{A}$ and $A_n \subseteq A_{n+1}$ for each $n \in \mathbb{N}$. Moreover it holds

$$\lim_{n \to \infty} A_n = A$$

Show that $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A)$.