Adrian Fuchs and Gundelinde Wiegel

Mathematical foundations of information theory SS 2018 Exercise Sheet 2

 21^{st} of March 2018

Exercise 7 (1 Point). The joint distribution of the vector (X, Y) is given by the following matrix:

(i,j)	-1	2	3
0	0.03	0.16	0.12
1	0.07	0.35	0.27

For example, $\mathbb{P}[(X, Y) = (0, -1)] = 0.03$.

- a) Calculate the marginal distributions of X and Y.
- b) Are X and Y independent?

Exercise 8 (2 Points). We consider a model with two urns: Urn I contains 3 red and 7 white balls and Urn II contains 7 red and 2 white balls. Now we proceed in two steps, namely Step I: Draw randomly a ball from Urn I and put it into Urn II, Step II: Draw randomly a ball from Urn II independent of the drawing before.

- (a) What is the probability, that the ball drawn in Step II is red?
- (b) What is the probability, that the drawn ball from Urn I was white, given that the ball drawn in Step II was red? (Hint: Use Bayes Theorem.)

Exercise 9 (2 Points). Show that a random variable X is almost surely constant, if and only if

 $\operatorname{Var}(X) = 0$.

(A random variable X is called almost surely constant, if $\mathbb{P}[X = a] = 1$.)

Exercise 10 (2 Points). For a nonnegative integer-valued random variable X, show that

$$\sum_{i=0}^{\infty} i \mathbb{P}[X > i] = \frac{1}{2} (\mathbf{E}(X^2) - \mathbf{E}(X)) \,.$$

Exercise 11 (1 Point). If $\mathbf{E}(X) = 1$ and $\mathbf{Var}(X) = 5$ find

- (a) $\mathbf{E}(2+X^2)$
- (b) Var(4+3X)

Exercise 12 (2 Points). Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of independent and identically distributed random variables with $\mathbb{P}[X_i = 0] = p$ and $\mathbb{P}[X_i = 1] = 1-p$ for all $i \in \mathbb{N}$. Show that for $p \in [0, 1)$

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i^2} = 1 \text{ almost surely}.$$