Mathematical foundations of information theory SS 2018 Exercise Sheet 3

 11^{th} of April 2018

Exercise 13 (1 Point). Let X be a discrete random variable with finite state space $\{0, 1, 2, 3\}$ and distribution

$$\mathbb{P}[X = k] = \text{poi}(\lambda)(k)$$
 for $k = 1, ... 3$ and $\mathbb{P}[X = 0] = 1 - \sum_{i=1}^{3} \text{poi}(\lambda)(i)$.

Find the entropy of X for $\lambda = \frac{1}{4}$. We write $X \sim \text{poi}(\lambda)$ if it is Poisson-distributed with parameter λ , that is

$$\mathbb{P}[X=k] = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Exercise 14 (2 Points). Let $(X_n)_{n \in \mathbb{N}}$ a sequence of independent random variables with $\mathbf{E}(X_i) = 0$ and $\mathbf{Var}(X_i) = C < \infty$ for all $i \in \mathbb{N}$. Let p > 1/2 and $S_n = X_1 + \ldots + X_n$. Show that $\lim_{n\to\infty} S_n/n^p = 0$ in probability. (Hint: Use the Central Limit Theorem.)

Exercise 15 (2 Points). (Jensen's inequality) Let $f: I \to \mathbb{R}$ be a convex function defined on an interval $I \subseteq \mathbb{R}$. Let $x_1, \ldots, x_n \in I$ be points in the interval, and let $q_i \in [0, 1], i = 1, \ldots, n$ be coefficients such that $\sum_{i=1}^{n} q_i = 1$. Show that:

$$f\left(\sum_{i=1}^{n} q_i x_i\right) \le \sum_{i=1}^{n} q_i \cdot f(x_i)$$

We call a function $f: I \to \mathbb{R}$ convex, if it holds for all values $x, y \in I$ and $t \in [0, 1]$ that

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$
.

(Hint: Use induction on n)

Exercise 16 (1 Point). Consider the following two-stage experiment: We first throw the sixsided dice. If the result is 1, we draw a ball from urn A. Otherwise, we draw from urn B. Urn A contains 2 black balls and 3 white balls. Urn B contains 3 red balls and 4 blue balls. Let Xbe the color of the drawn ball. Calculate the entropy of X.