Mathematical foundations of information theory SS 2018 Exercise Sheet 4

 18^{th} of April 2018

Exercise 17 (2 Points). Let X be a discrete random variable with values $\{x_1, x_2, \ldots, x_n\}$ and the distribution $\mathbb{P}[X = x_i] = p_i$ where $\sum_{i=1}^n p_i = 1$. We denote $p = (p_1, \ldots, p_n)$. Show that

- (a) $H(X) \ge 0$ and H(X) = 0 iff X is almost surely constant
- (b) the maximum of $p \mapsto H(p)$ is reached iff X is uniformly distributed. (Hint: Use Langrange Optimization.)

Exercise 18 (1 Point). Let X be a discrete random variable with values in $\{1, \ldots n\}$. P denotes the distribution on $\{1, \ldots n\}$ when $X \sim bin(n, p)$ and Q denotes the distribution on $\{1, \ldots n\}$ when $X \sim bin(n, q)$ for $p, q \in (0, 1)$. Compute the Kullback-Leibler-distance D(P || Q). We write $X \sim bin(n, p)$ if it is Binomial-distributed with parameters n, p, that is

$$\mathbb{P}[X=k] = \binom{n}{k} p^k (1-p)^{n-k}$$

Exercise 19 (2 Points). Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with $A, B \in \mathcal{A}, A \cap B = \emptyset$ and $\mathbb{P}(A) = \mathbb{P}(B) = \frac{1}{4}$. Let $X, Y : \Omega \to \{0, 1, -1\}$ be random variables defined by

$$X(\omega) = \begin{cases} 1 & \omega \in A \\ -1 & \omega \in B \text{ and } Y(\omega) = \begin{cases} -1 & \omega \in A \\ 1 & \omega \in B \\ 0 & \text{else} \end{cases}.$$

- (a) Are X and Y independent?
- (b) Show that $H(X) = H(Y) = H(X, Y) = I(X; Y) = \frac{3}{2}$ and $H(X \mid Y) = H(Y \mid X) = 0$.
- (c) Let Z := XY. Show that H(Z) < H(X,Y) = H(X,Y,Z) and $H(Z \mid X) = 0$ but $H(X \mid Z) > 0$.
- (d) Calculate $H(X \mid Z)$ and show that $H(X \mid Z) = I(X; Y \mid Z)$.

Exercise 20 (1 Point). Let $X, Y : (\Omega, \mathcal{A}) \to \mathbb{Q}$ be random variables. Show that X is independent of Y if and only if I(X;Y) = 0.

Exercise 21 (2 Points). Let X, Y be the values of two independently thrown dice. Calculate H(X + Y) and H(X) + H(Y) and compare the two values.